Sélection de la langue

Search

Sommaire du brevet 3005310 

Énoncé de désistement de responsabilité concernant l'information provenant de tiers

Une partie des informations de ce site Web a été fournie par des sources externes. Le gouvernement du Canada n'assume aucune responsabilité concernant la précision, l'actualité ou la fiabilité des informations fournies par les sources externes. Les utilisateurs qui désirent employer cette information devraient consulter directement la source des informations. Le contenu fourni par les sources externes n'est pas assujetti aux exigences sur les langues officielles, la protection des renseignements personnels et l'accessibilité.

Disponibilité de l'Abrégé et des Revendications

L'apparition de différences dans le texte et l'image des Revendications et de l'Abrégé dépend du moment auquel le document est publié. Les textes des Revendications et de l'Abrégé sont affichés :

  • lorsque la demande peut être examinée par le public;
  • lorsque le brevet est émis (délivrance).
(12) Demande de brevet: (11) CA 3005310
(54) Titre français: OUTIL DE FOND DE TROU DOTE D'UN ELEMENT DE STRUCTURE MODIFIABLE
(54) Titre anglais: DOWNHOLE TOOL WITH ALTERABLE STRUCTURAL COMPONENT
Statut: Réputée abandonnée et au-delà du délai pour le rétablissement - en attente de la réponse à l’avis de communication rejetée
Données bibliographiques
(51) Classification internationale des brevets (CIB):
  • E21B 17/18 (2006.01)
  • E21B 23/00 (2006.01)
  • E21B 41/00 (2006.01)
(72) Inventeurs :
  • SCHMIDT, DANIEL LEE (Etats-Unis d'Amérique)
(73) Titulaires :
  • HALLIBURTON ENERGY SERVICES, INC.
(71) Demandeurs :
  • HALLIBURTON ENERGY SERVICES, INC. (Etats-Unis d'Amérique)
(74) Agent: PARLEE MCLAWS LLP
(74) Co-agent:
(45) Délivré:
(86) Date de dépôt PCT: 2015-12-31
(87) Mise à la disponibilité du public: 2017-07-06
Requête d'examen: 2018-05-14
Licence disponible: S.O.
Cédé au domaine public: S.O.
(25) Langue des documents déposés: Anglais

Traité de coopération en matière de brevets (PCT): Oui
(86) Numéro de la demande PCT: PCT/US2015/068338
(87) Numéro de publication internationale PCT: US2015068338
(85) Entrée nationale: 2018-05-14

(30) Données de priorité de la demande: S.O.

Abrégés

Abrégé français

Divers modes de réalisation comprennent des procédés et un appareil conçus pour commander l'accès à partir d'un tubage dans un trou de forage. Un outil peut être prévu pour permettre l'écoulement à partir d'un diamètre interne d'un tubage vers une partie externe au tubage sur la base d'un matériau modifiable conçu sous forme d'une partie de l'outil. Le matériau modifiable peut être constitué d'un matériau soluble ou d'un matériau dégradable. Un appareil, des systèmes et des procédés supplémentaires peuvent être mis en uvre dans diverses d'applications.


Abrégé anglais

Various embodiments include methods and apparatus structured to control access from a casing in a borehole. A tool can be provided to allow flow from an inner diameter of a casing to external to the casing based on an alterable material structured as a portion of the tool. The alterable material can be structured as a dissolvable material or a degradable material. Additional apparatus, systems, and methods can be implemented in a variety of applications.

Revendications

Note : Les revendications sont présentées dans la langue officielle dans laquelle elles ont été soumises.


Claims
What is claimed is:
1. An apparatus comprising:
a tool operable to allow diversion of flow from an inner diameter of a casing
through
one or more ports at an outer diameter of the casing during operation in a
borehole; and
an alterable material structured as a portion of the tool such that the
alterable material
blocks access to the one or more ports, isolating the inner diameter from the
annulus while
running the casing into the borehole, until altering conditions of the
alterable material occur
that allows flow to be initiated from the inner diameter to the annulus, the
alterable material
being a dissolvable material or a degradable material.
2. The apparatus of claim 1, wherein the alterable material is structured
as a sleeve on
the inner diameter of the casing such that the sleeve breaks up according to
the altering
conditions.
3. The apparatus of claim 1, wherein the alterable material is a
dissolvable material
composed from materials that dissolve over time based on temperature.
4. The apparatus of claim 3, where the dissolvable material includes
material that has an
average dissolution rate in excess of 0.01 mg/cm2/hr at 200 °F. in 15%
KCl at a pH of 7.
5. The apparatus of claim 3, wherein the dissolvable material includes one
or more of a
magnesium alloy or an aluminum alloy.
6. The apparatus of claim 5, wherein the magnesium alloy is a magnesium
alloy alloyed
with a dopant, the dopant selected from a group including iron, nickel,
copper, carbon, and
tin.
7. The apparatus of claim 5, wherein the aluminum alloy is an aluminum
alloy that is
alloyed with a dopant, the dopant selected from a group including gallium,
mercury, indium,
iron, copper, nickel, and tin.

8. The apparatus of claim 3, wherein the dissolvable material includes a
dissolvable
metal matrix having added particles, the added particles being non-dissolving
metal or non-
dissolving ceramic.
9. The apparatus of claim 8, wherein the non-dissolving ceramic includes a
ceramic
selected from a group including zirconia, alumina, carbide, boride, nitride,
synthetic
diamond, silica.
10. The apparatus of claim 1, wherein the alterable material is a
degradable material.
11. The apparatus of claim 10, wherein the degradable material includes a
degradable
metal alloy exhibiting a nano-structured matrix form and/or inter-granular
inclusions.
12. The apparatus of claim 11, wherein the degadable metal alloy includes a
dopant such
that presence of the dopant increases degradation rate of the degradable metal
alloy relative a
degradation rate without the dopant.
13. The apparatus of claim 10, wherein the degradable material includes a
solution-
structured galvanic material.
14. The apparatus of claim 13, wherein the solution-structured galvanic
material is a
structure of zirconium containing a magnesium alloy in which different domains
within the
structure contain different percentages of zirconium.
15. The apparatus of claim 10, wherein the degadable material includes
degradable
metal magnesium alloys solution structured with one or more elements selected
from a group
including zinc, aluminum, nickel, iron, carbon, tin, silver, copper, titanium,
a rare earth
element, and combinations thereof.
16. The apparatus of claim 10, wherein the degradable material includes
metal aluminum
alloys solution structured with one or more elements selected from a group
including nickel,
iron, carbon, tin, silver, copper, titanium, gallium, mercury, and
combinations thereof."
11

17. The apparatus of claim 1; wherein the alterable material is structured
as one or more
unique plugs.
18. The apparatus of claim 17, wherein the one or more unique plugs are
arranged as
obstructions to the one or more ports.
19. The apparatus of claim 1, wherein the one or more ports include a
rupture disc.
20. A method comprising:
running a tool in a borehole as part of a completion system, the tool operable
to allow
diversion of flow from an inner diameter of a casing through one or more ports
at an outer
diameter of the casing during operation in the borehole, the tool including an
alterable
material structured such that the alterable material blocks access to the one
or more ports,
isolating the inner diameter from the annulus while running the casing into
the borehole, until
altering conditions of the alterable material occur that allows flow to be
initiated from the
inner diameter to the annulus, the alterable material being a dissolvable
material or a
degradable material;
securing the casing;
pressure testing the casing; and
fracturing formation around the borehole after a time at which breaking up of
the
alterable material, according to the altering conditions, has substantially
completed.
21. The method of claim 20, wherein securing the casing includes cementing
the casing or
setting the casing with packers.
22. The method of claim 20, wherein the alterable material is structured as
a sleeve on the
inner diameter of the casing such that the sleeve breaks up according to the
altering
conditions.
23. The method of claim 20, wherein the alterable material is a dissolvable
material
composed from materials that dissolve over time based on temperature.
12

24. The method of claim 23, where the dissolvable material includes a
fabricated part that
loses greater than 0.1% of its total mass per day at 200 °F in 15% KCI
at a pH of 7.
25. The method of claim 20, wherein the alterable material is a degadable
material.
26. The method of claim 25, wherein the degradable material includes a
degradable metal
alloy exhibiting a nano-structured matrix form and/or inter-granular
inclusions.
27. The method of claim 25, wherein the degradable material includes a
solution-
structured galvanic material.
28. The method of claim 20, wherein the alterable material is structured as
one or more
unique plugs.
29. The method of claim 28, wherein the one or more plugs are arranged as
obstructions
to the one or more ports.
13

Description

Note : Les descriptions sont présentées dans la langue officielle dans laquelle elles ont été soumises.


CA 03005310 2018-05-14
WO 2017/116477 PCT/US2015/068338
DOWNROLE TOOL WITH ALTERABLE STRUCTURAL COMPONENT
Technical Field
[0001] The present invention relates generally to apparatus and methods
related to oil and
gas exploration..
Background
[0002] In drilling wells for oil and gas exploration, the environment in which
the drilling
tools operate is at significant distances below the surface. Due to harsh
environments and
depths in which drilling in formations is conducted, enhanced efficiencies to
drilling
operations and post drilling operations are desirable.
Brief Description of the Drawings
[0003] Figure 1 is a cross-sectional view of a schematic representation of a
tool
implemented as a toe initiator with a dissolving sleeve, in accordance with
various
embodiments.
[0004] Figure 2 is an outer view of a tool having one or more plugs that
connects the inner
diameter region of a casing to an annulus, in accordance with various
embodiments.
[0005] Figure 3 is a flow diagram of features of an example method of
operating a
completion system in a borehole, in accordance with various embodiments.
[0006] Figure 4 is an illustration of an example a cemented in casing string
with initiator, in
accordance with various embodiments.
Detailed Description
[0007] The following detailed description refers to the accompanying drawings
that show,
by way of illustration and not limitation, various embodiments in which the
invention may be
practiced. These embodiments are described in sufficient detail to enable
those skilled in the
art to practice these and other embodiments. Other embodiments may be
utilized, and
structural, logical, and electrical changes may be made to these embodiments.
The various
embodiments are not necessarily mutually exclusive, as some embodiments can be
combined
with one or more other embodiments to form new embodiments. The following
detailed
description is, therefore, not to be taken in a limiting sense.
1

CA 03005310 2018-05-14
WO 2017/116477 PCT/US2015/068338
[0008] In various embodiments, an apparatus includes a tool having_an
alterable material
structured as a portion of the tool to control diversions of flow from an
inner diameter (ID) of
a casing through one or more ports at an outer diameter (OD) of the casing
during operation
in a borehole. The casing may be separated from a wall of the borehole by an
annulus. The
alterable material can be structured as a portion of the tool such that the
alterable material
blocks access to the one or more ports, isolating the inner diameter from the
annulus while
running the casing into the borehole, until altering conditions of the
alterable material occur
that allows flow to be initiated from the inner diameter to the annulus. The
alterable material
can be a dissolvable material or a degradable material. With known
characteristics of the
dissolvable material or degradable material, drilling based operations can be
scheduled
according to the time characteristics for the dissolvable material to dissolve
or the time
characteristics of the degradable material to degrade to a level such that
flow can be initiated
from the inner diameter to the annulus. Such a tool can be implemented to
provide a straight
forward procedure to create access from an inner portion of a casing to the
annulus outside
the casing at selected depths in the borehole.
[0009] In a non-limiting embodiment, such a tool can be implemented for toe
initiation for
completions in a well. The tool, as taught herein, could be used to replace
current initiator
tools. Figure 1 is a schematic representation of a tool 105 implemented as a
toe initiator with
a dissolving sleeve 110. The tool 105 can utilize the dissolving sleeve 110 on
the ID 114 of a
casing 115 that isolates the ID 114 of the casing 115 from an annulus 120
during run in a
borehole having a borehole wall 122. In some embodiments, the casing 115 may
be disposed
directly against the borehole wall 122.
[00101 En operation, the tool 105 can be run in the borehole in the same
manner as current
completion systems. Once at the bottom, the well can be cemented, or swell
packers can be
used for an open hole completion. The casing 115 is then pressure tested.
After the well is
cemented, there is a period of time before the well is fractured. The
dissolvable sleeve 110
within the tool 105 can withstand an operational casing pressure test, but can
dissolve before
the fracturing crew is on site. This provides an efficient mechanism to
generate access from
the ID 114 of the casing 115 through ports 121 to annulus 120 or to the
borehole wall 122,
while satisfying scheduling criteria of a drilling operation. The one or more
ports 121 can
include a rupture disc 119. The rupture disc 119 can be composed of
dissolvable material or
degradable material.
2

CA 03005310 2018-05-14
WO 2017/116477
PCT/US2015/068338
[0011]Figure 2 is an outer view of a casing 215 and a tool 205 having one or
more plugs
212. The tool 205 can be structured with the one or more plugs 212 being
dissolvable plugs.
The one or more plugs 212 can be composed of an alterable material structured
as a portion
of the tool 205 to control diversions of flow from the inner diameter region
of the casing 215
to an annulus 220 between the casing 215 and borehole wall 222 or directly to
the borehole
wall 222. For a plurality of plugs, the plugs can be realized as unique,
individual plugs. One
or more unique plugs can be arranged as obstructions that connect the inner
diameter region
of the casing 215 to the annulus 220. Such dissolvable plugs can be arranged
in threaded
ports. The
dissolvable plugs 112 can be used with the dissolving sleeve 110 of Figure 1.
[00121 Systems using alterable material in tools as a toe initiator are simple
and would
eliminate much of the concerns associated with the current toe initiator
systems. This system
would also be cost effective. Current toe initiators are complicated and
require precise
assembly and operational procedures to function properly. Tools, as taught
herein, can be
simple to build and run, providing a toe initiator system that is simple and
cost effective.
Such tools can be implemented with no moving parts.
[0013] In various embodiments, the tool 105 of Figure 1, for example, can be
implemented
with the alterable material structured as the sleeve 110 on the inner diameter
114 of the
casing 115 such that the sleeve 110 breaks up according to the altering
conditions. The
alterable material can also be used in plugs 212 of Figure 2. The alterable
material can be a
dissolvable material composed from materials that dissolve over time based on
temperature.
The dissolvable material can be realized in a number of formats. The
dissolvable material
can include material that has an average dissolution rate in excess of 0.01
mg/cm2lbr at 200
I' in 15% .KC',1 at a pH of about 7. The dissolvable material can be a
fabricated part that will
lose greater than 0.1% of its total mass per day at 200 F in 15% KC1 at a pH
of about 7.
[001.4] The dissolvable material can include one or more of a magnesium alloy
or an
aluminum alloy. The magnesium alloy can be a magnesium alloy alloyed with a
dopant,
where the dopant is selected from a group including iron, nickel, copper,
carbon, and tin. The
aluminum alloy can be an aluminum alloy that is alloyed with a dopant, where
the dopant is
selected from a group including gallium, mercury, indium, iron, copper,
nickel, and tin. The
dopant may be included with the magnesium and/or aluminum alloy dissolvable
material in
an amount of from. about 0.05% to about 15% by weight of the dissolvable
material. The
dissolvable material can include a dissolvable metal matrix having added
particles, where the
added particles can be non-dissolving metal or non-dissolving ceramic. The non-
dissolving
'3

CA 03005310 2018-05-14
WO 2017/116477
PCT/US2015/068338
ceramic can include a ceramic selected from a group including zirconi a,
alumina, carbide,
boride, nitride, synthetic diamond, silica. The added particles within the
dissolvable metal
matrix can strengthen the dissolvable metal matrix. The non-dissolving
particles can be any
shape including granules, rods, cones, acicular, et cetera. The ceramic
granules can be
constructed from zirconia (including zircon), alumina (including fused
alumina, chrome-
alumina, and emery), carbide (including tungsten carbide, silicon carbide,
titanium carbide,
and boron carbide), boride (including boron nitride, osmium diboride, rhenium
boride, and
tungsten boride), nitride (including silica nitride), synthetic diamond, and
silica. The ceramic
can be an oxide (like alumina and zirconia) or a non-oxide (like carbide,
nitride, and boride).
The ceramic granules can have acute exterior angles to lock together.
100151 The alterable material may be realized as a degradable material. The
degradable
material can be selected as material that degrades under specified conditions
such that the
degradable material no later isolates the ID of a casing from the annulus
while running the
casing into the borehole, but allows flow to be initiated from the 1D to the
annulus. The
dissolvable material can be realized in a number of formats. The degradable
material can
include a degradable metal alloy exhibiting a nano-structured matrix form
and/or inter-
granular inclusions. A magnesium alloy with iron-coated inclusions can be
used, for
example.
[0016] The degradable metal alloy can include a dopant such that presence of
the dopant
increases degradation rate of the degradable metal alloy relative to a
degradation rate without
the dopant. The degradable material can include a solution-structured galvanic
material. The
solution-structured galvanic material can be a structure of zirconium
containing a magnesium
alloy in which different domains within the structure contain different
percentages of
zirconium. This can lead to a galvanic coupling between these different
domains, which can
cause micro-galvanic corrosion and degradation.
[0017] The degradable material can include a degradable metal magnesium alloy
solution
structured with one or more elements selected from a group including zinc,
aluminum, nickel,
iron, carbon, tin, silver, copper, titanium, a rare earth element, and
combinations thereof. The
degradable material can include metal aluminum alloys solution structured with
one or more
elements selected from a group including nickel, iron, carbon, tin, silver,
copper, titanium,
gallium, mercury, and combinations thereof. The dopant may be included with
the
magnesium and/or aluminum alloy degradable metal material in an amount of from
about
0.05% to about 15% by weight of the degradable metal material.
4

CA 03005310 2018-05-14
WO 2017/116477 PCT/US2015/068338
[00181 Figure 3 is a flow diagram of features of an embodiment of an example
method 300
of operating a completion system in a borehole. At 310, a tool is run into a
borehole as part
of a completion system including a casing. The tool can be operable to allow
diversion of
flow from an inner diameter of the easing through one or more ports at an
outer diameter of
the casing during operation in the borehole. In various embodiments, the
casing may be
separated from a wall of the borehole by an annulus. The tool can include an
alterable
material structured such that the alterable material blocks access to the one
or more ports at
an outer diameter of the casing, isolating the inner diameter of the casing
from the annulus
around the casing while running the casing into the borehole, until altering
conditions of the
alterable material occur that allows flow to be initiated from the inner
diameter to the
annulus. The alterable material can be a dissolvable material or a degradable
material.
10019] The alterable material can be realized in a number of different
arrangements or
composed of different materials. The alterable material can be structured as a
sleeve on the
inner diameter of the casing such that the sleeve breaks up according to the
altering
conditions. The alterable material can be structured as one or more unique
plugs. The one or
more plugs can be arranged as obstructions to the one or more ports.
[0020] The alterable material can be a dissolvable material composed from
materials that
dissolve over time based on temperature. The dissolvable material can include
a fabricated
part that loses greater than 0.1% of its total mass per day at 200 F in 15%
KCI at a pH of 7.
[00211 The alterable material can be a degradable material. The degradable
material can
include a degradable metal alloy exhibiting a nano-structured matrix form
and/or inter-
granular inclusions. The degradable material can include a solution-structured
galvanic
material. The alterable material can be realized by other structures as taught
herein.
[0022] At 320, the casing is secured. Securing the casing can include
cementing the casing
or setting the casing with packers. At 330, the casing is pressure tested. At
340, formation
around the borehole is fractured after a time at which breaking up of
alterable material of the
tool, according to altering conditions, has substantially completed.
[00231 Figure 4 is an illustration of an example a cemented casing string 415
with initiators
405-1 and 405-2. At this point in the overall process, drilling in formation
402 has completed
and a casing 415 is cemented in place. The drilling string has been removed
before the
casing 415 is installed. The initiators 405-1 and 405-2 are used to initiate
fractures 421 and
423 and fractures 427 and 429, respectively. The initiators 405-1 and 405-2
can be placed
with the assistance of landing collar 411, float collar 413, and float shoe
417. The initiators

CA 03005310 2018-05-14
WO 2017/116477 PCT/US2015/068338
405-1 and 405-2 can be arranged as part of a completion system, where the
initiators 405-1
and 405-2 can include an alterable material structured as a portion of the
initiators 405-1 and
405-2 to control diversions of flow. The initiators 405-1 and 405-2 can be
structured and
operated as taught herein, using the efficiencies provided by the presence
alterable material.
[0024] The following are example embodiments of methods and systems in
accordance
with the teachings herein.
100251 An example 1 of an apparatus comprises: a tool operable to allow
diversion of flow
from an inner diameter of a casing through one or more ports at an outer
diameter of the
casing during operation in a borehole and an alterable material structured as
a portion of the
tool such that the alterable material blocks access to the one or more ports,
isolating the inner
diameter from the annulus while running the casing into the borehole, until
altering
conditions of the alterable material occur that allows flow to be initiated
from the inner
diameter to the annulus, the alterable material being a dissolvable material
or a degradable
material.
[0026] An example 2 of an apparatus can include elements of apparatus example
1 and can
include the alterable material structured as a sleeve on the inner diameter of
the casing such
that the sleeve breaks up according to the altering conditions.
[0027] An example 3 of an apparatus can include elements of any of apparatus
examples 1
and 2 and can include the alterable material being a dissolvable material
composed from
materials that dissolve over time based on temperature.
[0028] An example 4 of an apparatus can include elements of apparatus example
3 and
elements of any of apparatus examples I and 2 and can include the dissolvable
material to
include material that has an average dissolution rate in excess of 0.01
mg/cm2/hr at 200 F in
15% KC1 at a pH of 7.
[0029] An example 5 of an apparatus can include elements of apparatus example
3 and
elements of any of apparatus examples 1, 2 and 4 and can include the
dissolvable material to
include one or more of a magnesium alloy or an aluminum alloy.
[00301 An example 6 of an apparatus can include elements of apparatus example
5 and
elements of any of apparatus examples 1-4 and can include the magnesium alloy
being a
magnesium alloy alloyed with a dopant, the dopant selected from a group
including iron,
nickel, copper, carbon, and tin.
[00311 An example 7 of an apparatus can include elements of apparatus example
5 and
elements of any of apparatus examples 1-4 and 6 and can include the aluminum
alloy being
6

CA 03005310 2018-05-14
WO 2017/116477 PCT/US2015/068338
an aluminum alloy that is alloyed with a dopant, the dopant selected from a
group including
gallium, mercury, indium, iron, copper, nickel, and tin.
[0032] An example 8 of an apparatus can include elements of apparatus example
3 and
elements of any of apparatus examples 1, 2, and 4-7 and can include the
dissolvable material
to include a dissolvable metal matrix having added particles, the added
particles being a non-
dissolving metal or a non-dissolving ceramic.
[00331 An example 9 of an apparatus can include elements of apparatus example
8 and
elements of any of apparatus examples 1, and 8-7 and can include the non-
dissolving ceramic
to include a ceramic selected from a group including zirconia, alumina,
carbide, boride,
nitride, synthetic diamond, silica.
[0034] An example 10 of an apparatus can include elements of any of apparatus
examples
1-9 and can include the alterable material to be a degradable material.
[0035] An example 11 of an apparatus can include elements of apparatus example
10 and
elements of any of apparatus examples 1-9 and can include the degradable
material to include
a degradable metal alloy exhibiting a nano-structured matrix form and/or inter-
granular
inclusions.
[0036] An example 12 of an apparatus can include elements of apparatus example
11 and
elements of any of apparatus examples 1-10 and can include the degradable
metal alloy to
include a dopant such that presence of the dopant increases degradation rate
of the degradable
metal alloy relative a degradation rate without the dopant.
[0037] An example 13 of an apparatus can include elements of apparatus example
10 and
elements of any of apparatus examples 1-9 and 11-12 and can include the
degradable material
to include a solution-structured galvanic material.
[0038] An example 14 of an apparatus can include elements of apparatus example
13 and
elements of any of apparatus examples 1-12 and can include the solution-
structured galvanic
material to be a structure of zirconium containing a magnesium alloy in which
different
domains within the structure contain different percentages of zirconium.
[0039] An example 15 of an apparatus can include elements of apparatus example
10 and
elements of any of apparatus examples 1-9 and 11-14 and can include the
degradable material
to include degradable metal magnesium alloys solution structured with one or
more elements
selected from a group including zinc, aluminum, nickel, iron, carbon, tin,
silver, copper,
titanium, a rare earth element, and combinations thereof.
7

CA 03005310 2018-05-14
WO 2017/116477 PCT/US2015/068338
[0040] An example 16 of an apparatus can include elements of apparatus example
10 and
elements of any of apparatus examples 1-9 and 11-15 and can include the
degradable material
to include metal aluminum alloys solution structured with one or more elements
selected
from a group including nickel, iron, carbon, tin, silver, copper, titanium,
gallium, mercury,
and combinations thereof.
[0041] An example 17 of an apparatus can include elements of any of apparatus
examples
1-16 and can include the alterable material structured as one or more unique
plugs.
[00421 An example 18 of an apparatus can include elements of apparatus example
17 and
can include elements of any of apparatus examples 1-16 and can include the one
or more
unique plugs arranged as obstructions to the one or more ports.
[0043] An example 19 of an apparatus can include elements of any of apparatus
examples
1-18 and can include the one or more ports to include a rupture disc.
[0044] An example 1 of a method comprises: running a tool in a borehole as
part of a
completion system, the tool operable to allow diversion of flow from an inner
diameter of a
casing through one or more ports at an outer diameter of the casing during
operation in the
borehole, the tool including an alterable material structured such that the
alterable material
blocks access to the one or more ports, isolating the inner diameter from the
annulus while
running the casing into the borehole, until altering conditions of the
alterable material occur
that allows flow to be initiated from the inner diameter to the annulus, the
alterable material
being a dissolvable material or a degradable material; securing the casing;
pressure testing the
casing; and fracturing formation around the borehole after a time at which
breaking up of the
alterable material, according to the altering conditions, has substantially
completed.
[0045] An example 2 of a method can include elements of method example 1 and
can
include securing the casing to include cementing the casing or setting the
casing with
packers.
[0046] An example 3 of a method can include elements of method examples 1 and
2 and
can include the alterable material structured as a sleeve on the inner
diameter of the casing
such that the sleeve breaks up according to the altering conditions.
[0047] An example 4 of a method can include elements of any of method examples
1-3 and
can include the alterable material being a dissolvable material composed from
materials that
dissolve over time based on temperature.
[0048] An example 5 of a method can include elements of method example 4 and
elements
of any of method examples 1-3 and can include the dissolvable material to
include a
8

CA 03005310 2018-05-14
WO 2017/116477 PCT/US2015/068338
fabricated part that loses greater than 0.1% of its total mass per day at 200
F in 15% K.C1 at a
pH of 7.
[0049] An example 6 of a method can include elements of any of method examples
1-5 and
can include the alterable material being a degradable material.
[0050] An example 7 of a method can include elements of method example 6 and
elements
of any of method examples 1-5 and can include the degradable material to
include a
degradable metal alloy exhibiting a nano-structured matrix form and/or inter-
granular
inclusions.
[0051] An example 8 of a method can include elements of method example 6 and
elements
of any of method examples 1-5 and 7 and can include the degradable material
includes a
solution-structured galvanic material.
[0052] An example 9 of a method can include elements of any of method examples
1-8 and
can include the alterable material being structured as one or more unique
plugs.
[0053] An example 10 of a method can include elements of method example 9 and
elements of any of method examples 1-8 and can include the one or more plugs
being
arranged as obstructions to the one or more ports.
[0054] Although specific embodiments have been illustrated and described
herein, it will
be appreciated by those of ordinary skill in the art that any arrangement that
is calculated to
achieve the same purpose may be substituted for the specific embodiments
shown. Various
embodiments use permutations and/or combinations of embodiments described
herein. It is
to be understood that the above description is intended to be illustrative,
and not restrictive,
and that the phraseology or terminology employed herein is for the purpose of
description.
Combinations of the above embodiments and other embodiments will be apparent
to those of
skill in the art upon studying the above description.
9

Dessin représentatif
Une figure unique qui représente un dessin illustrant l'invention.
États administratifs

2024-08-01 : Dans le cadre de la transition vers les Brevets de nouvelle génération (BNG), la base de données sur les brevets canadiens (BDBC) contient désormais un Historique d'événement plus détaillé, qui reproduit le Journal des événements de notre nouvelle solution interne.

Veuillez noter que les événements débutant par « Inactive : » se réfèrent à des événements qui ne sont plus utilisés dans notre nouvelle solution interne.

Pour une meilleure compréhension de l'état de la demande ou brevet qui figure sur cette page, la rubrique Mise en garde , et les descriptions de Brevet , Historique d'événement , Taxes périodiques et Historique des paiements devraient être consultées.

Historique d'événement

Description Date
Demande non rétablie avant l'échéance 2021-10-04
Inactive : Morte - Taxe finale impayée 2021-10-04
Réputée abandonnée - omission de répondre à un avis sur les taxes pour le maintien en état 2021-06-30
Lettre envoyée 2020-12-31
Représentant commun nommé 2020-11-07
Réputée abandonnée - les conditions pour l'octroi - jugée non conforme 2020-10-02
Un avis d'acceptation est envoyé 2020-06-02
Lettre envoyée 2020-06-02
Un avis d'acceptation est envoyé 2020-06-02
Inactive : Approuvée aux fins d'acceptation (AFA) 2020-05-05
Inactive : Q2 réussi 2020-05-05
Modification reçue - modification volontaire 2020-02-07
Rapport d'examen 2019-11-07
Représentant commun nommé 2019-10-30
Représentant commun nommé 2019-10-30
Inactive : Rapport - Aucun CQ 2019-10-25
Modification reçue - modification volontaire 2019-08-19
Inactive : Dem. de l'examinateur par.30(2) Règles 2019-04-05
Inactive : Rapport - Aucun CQ 2019-03-29
Inactive : Page couverture publiée 2018-06-13
Inactive : Acc. récept. de l'entrée phase nat. - RE 2018-06-06
Inactive : Acc. récept. de l'entrée phase nat. - RE 2018-05-28
Exigences relatives à une correction du demandeur - jugée conforme 2018-05-23
Inactive : CIB attribuée 2018-05-23
Inactive : CIB attribuée 2018-05-23
Inactive : CIB attribuée 2018-05-23
Demande reçue - PCT 2018-05-23
Inactive : CIB en 1re position 2018-05-23
Lettre envoyée 2018-05-23
Lettre envoyée 2018-05-23
Lettre envoyée 2018-05-23
Exigences pour l'entrée dans la phase nationale - jugée conforme 2018-05-14
Exigences pour une requête d'examen - jugée conforme 2018-05-14
Toutes les exigences pour l'examen - jugée conforme 2018-05-14
Demande publiée (accessible au public) 2017-07-06

Historique d'abandonnement

Date d'abandonnement Raison Date de rétablissement
2021-06-30
2020-10-02

Taxes périodiques

Le dernier paiement a été reçu le 2019-09-10

Avis : Si le paiement en totalité n'a pas été reçu au plus tard à la date indiquée, une taxe supplémentaire peut être imposée, soit une des taxes suivantes :

  • taxe de rétablissement ;
  • taxe pour paiement en souffrance ; ou
  • taxe additionnelle pour le renversement d'une péremption réputée.

Les taxes sur les brevets sont ajustées au 1er janvier de chaque année. Les montants ci-dessus sont les montants actuels s'ils sont reçus au plus tard le 31 décembre de l'année en cours.
Veuillez vous référer à la page web des taxes sur les brevets de l'OPIC pour voir tous les montants actuels des taxes.

Historique des taxes

Type de taxes Anniversaire Échéance Date payée
Enregistrement d'un document 2018-05-14
Taxe nationale de base - générale 2018-05-14
TM (demande, 2e anniv.) - générale 02 2018-01-02 2018-05-14
Requête d'examen - générale 2018-05-14
TM (demande, 3e anniv.) - générale 03 2018-12-31 2018-08-15
TM (demande, 4e anniv.) - générale 04 2019-12-31 2019-09-10
Titulaires au dossier

Les titulaires actuels et antérieures au dossier sont affichés en ordre alphabétique.

Titulaires actuels au dossier
HALLIBURTON ENERGY SERVICES, INC.
Titulaires antérieures au dossier
DANIEL LEE SCHMIDT
Les propriétaires antérieurs qui ne figurent pas dans la liste des « Propriétaires au dossier » apparaîtront dans d'autres documents au dossier.
Documents

Pour visionner les fichiers sélectionnés, entrer le code reCAPTCHA :



Pour visualiser une image, cliquer sur un lien dans la colonne description du document. Pour télécharger l'image (les images), cliquer l'une ou plusieurs cases à cocher dans la première colonne et ensuite cliquer sur le bouton "Télécharger sélection en format PDF (archive Zip)" ou le bouton "Télécharger sélection (en un fichier PDF fusionné)".

Liste des documents de brevet publiés et non publiés sur la BDBC .

Si vous avez des difficultés à accéder au contenu, veuillez communiquer avec le Centre de services à la clientèle au 1-866-997-1936, ou envoyer un courriel au Centre de service à la clientèle de l'OPIC.


Description du
Document 
Date
(aaaa-mm-jj) 
Nombre de pages   Taille de l'image (Ko) 
Description 2018-05-13 9 592
Revendications 2018-05-13 4 154
Dessins 2018-05-13 4 120
Abrégé 2018-05-13 1 63
Dessin représentatif 2018-05-13 1 34
Revendications 2019-08-18 4 125
Revendications 2020-02-06 4 146
Accusé de réception de la requête d'examen 2018-05-22 1 174
Avis d'entree dans la phase nationale 2018-06-05 1 201
Avis d'entree dans la phase nationale 2018-05-27 1 201
Courtoisie - Certificat d'enregistrement (document(s) connexe(s)) 2018-05-22 1 102
Courtoisie - Certificat d'enregistrement (document(s) connexe(s)) 2018-05-22 1 102
Avis du commissaire - Demande jugée acceptable 2020-06-01 1 551
Courtoisie - Lettre d'abandon (AA) 2020-11-26 1 544
Avis du commissaire - non-paiement de la taxe de maintien en état pour une demande de brevet 2021-02-10 1 537
Courtoisie - Lettre d'abandon (taxe de maintien en état) 2021-07-20 1 551
Traité de coopération en matière de brevets (PCT) 2018-05-13 3 166
Demande d'entrée en phase nationale 2018-05-13 13 474
Traité de coopération en matière de brevets (PCT) 2018-05-13 2 83
Rapport de recherche internationale 2018-05-13 2 91
Demande de l'examinateur 2019-04-04 4 210
Modification / réponse à un rapport 2019-08-18 16 589
Demande de l'examinateur 2019-11-06 4 289
Modification / réponse à un rapport 2020-02-06 21 852