Sélection de la langue

Search

Sommaire du brevet 3054748 

Énoncé de désistement de responsabilité concernant l'information provenant de tiers

Une partie des informations de ce site Web a été fournie par des sources externes. Le gouvernement du Canada n'assume aucune responsabilité concernant la précision, l'actualité ou la fiabilité des informations fournies par les sources externes. Les utilisateurs qui désirent employer cette information devraient consulter directement la source des informations. Le contenu fourni par les sources externes n'est pas assujetti aux exigences sur les langues officielles, la protection des renseignements personnels et l'accessibilité.

Disponibilité de l'Abrégé et des Revendications

L'apparition de différences dans le texte et l'image des Revendications et de l'Abrégé dépend du moment auquel le document est publié. Les textes des Revendications et de l'Abrégé sont affichés :

  • lorsque la demande peut être examinée par le public;
  • lorsque le brevet est émis (délivrance).
(12) Brevet: (11) CA 3054748
(54) Titre français: PROCEDE DE FABRICATION D'HYDROXYDE DE LITHIUM A PARTIR DE MINERAI DE LITHIUM
(54) Titre anglais: METHOD FOR PRODUCING LITHIUM HYDROXIDE FROM LITHIUM-CONTAINING ORE
Statut: Accordé et délivré
Données bibliographiques
(51) Classification internationale des brevets (CIB):
  • C22B 1/08 (2006.01)
  • C01D 15/02 (2006.01)
  • C22B 3/26 (2006.01)
  • C22B 3/42 (2006.01)
  • C22B 3/44 (2006.01)
  • C22B 26/12 (2006.01)
  • C25B 1/16 (2006.01)
(72) Inventeurs :
  • BIGLARI, MOSTAFA (Allemagne)
(73) Titulaires :
  • SMS GROUP GMBH
(71) Demandeurs :
  • SMS GROUP GMBH (Allemagne)
(74) Agent: RICHES, MCKENZIE & HERBERT LLP
(74) Co-agent:
(45) Délivré: 2022-10-04
(86) Date de dépôt PCT: 2018-02-05
(87) Mise à la disponibilité du public: 2018-09-07
Requête d'examen: 2019-08-27
Licence disponible: S.O.
Cédé au domaine public: S.O.
(25) Langue des documents déposés: Anglais

Traité de coopération en matière de brevets (PCT): Oui
(86) Numéro de la demande PCT: PCT/EP2018/052759
(87) Numéro de publication internationale PCT: WO 2018158041
(85) Entrée nationale: 2019-08-27

(30) Données de priorité de la demande:
Numéro de la demande Pays / territoire Date
10 2017 203 265.0 (Allemagne) 2017-02-28
10 2017 221 288.8 (Allemagne) 2017-11-28

Abrégés

Abrégé français

L'invention concerne un procédé de fabrication d'hydroxyde de lithium (4), notamment d'hydroxyde de grande pureté destiné à être utilisé dans des batteries et/ou des accumulateurs, à partir de minerai et/ou minéral et/ou terres de lithium (1) à l'aide d'un processus de chlore-alcali. L'invention vise à produire une solution qui, dans le cas d'un tel procédé, augmente le taux de récupération d'hydroxyde de lithium de grande pureté lors de l'application du processus chlore-alcali. A cet effet, une étape de calcination et de lessivage (A) consiste à produire une solution de chlorure de lithium (2), les minerais et/ou minéraux et/ou terres de lithium (1) étant d'abord calcinés à l'aide d'au moins un chlorure métallique (5) et/ou d'un mélange de chlorures métalliques (5) puis lessivés, notamment à l'aide d'eau; une étape de purification (B) subséquente consiste à produire une solution de chlorure de lithium de grande pureté (3), la solution de chlorure de lithium (2) étant purifiée à partir de la solution de chlorure de lithium (2) notamment par enlèvement de cations, par exemple, sodium, calcium, magnésium et/ou fer; une étape d'hydrolyse (C) subséquente consiste à produire de l'hydroxyde de lithium (4), notamment de l'hydroxyde de lithium de grande pureté, la solution de chlorure de lithium de grande pureté (3) étant soumise à une électrolyse de membrane générant comme sous-produits un gaz chloré et de l'hydrogène.


Abrégé anglais


The invention relates to a method for producing lithium hydroxide, for use in
batteries and/or accumulators, from lithium-containing ore, mineral and/or
earths.
The aim of the invention is to provide a method by which highly pure lithium
hydroxide may be produced using a chlor-alkali electrolysis. In a calcining
and
leaching step, a lithium chloride solution is produced, the lithium-containing
ores,
minerals and/or earths first being roasted, one or more metal chlorides and/or
a
mixture of metal chlorides being used, and then leached out, water being used,
then a highly pure lithium chloride solution being produced in a subsequent
purification step, the solution being purified by removing cations, such as
sodium,
potassium, calcium, magnesium, and/or iron, and then lithium hydroxide being
produced in a subsequent electrolysis step, the highly pure lithium chloride
solution being subjected to a membrane electrolysis process, which produces
chlorine gas and hydrogen as byproducts.

Revendications

Note : Les revendications sont présentées dans la langue officielle dans laquelle elles ont été soumises.


CLAIMS
1. A method for producing lithium hydroxide (4), for use in at least one of
batteries and accumulators, from at least one of lithium-containing ore,
lithium-
containing mineral and lithium-containing earth (1) by means of a chlor-alkali
process, wherein
- in a calcining and leaching step (A), a lithium chloride solution (2) is
produced, wherein the at least one of said lithium-containing ore, lithium-
containing mineral and lithium-containing earth (1) is initially roasted by
using a
metal chloride (5) or a mixture of metal chlorides (5), and is then leached
out,
wherein the metal chloride (5) or the mixture of metal chlorides (5) comprises
at
least sodium chloride,
- wherein, in a subsequent purification step (B), a highly pure lithium
chloride solution (3) is produced, wherein the lithium chloride solution (2)
is
purified by removing cations from the lithium chloride solution (2), said
cations
comprising a sodium cation, and
- wherein, in a subsequent electrolysis step (C), lithium hydroxide (4) is
produced, wherein the highly pure lithium chloride solution (3) is subjected
to a
membrane electrolysis process, which produces chlorine gas and hydrogen as
byproducts,
- wherein, sodium chloride obtained in the purification step (B) is used
for
roasting the at least one of said lithium-containing ore, lithium-containing
mineral
= and lithium-containing earth (1) and is supplied to the calcining and
leaching step
(A).
2. The method according to claim 1, wherein the cations removed in the
purification step (B) further cOmprise one or more selected from the group
=
consisting of potassium, calcium, magnesium and iron.
3. The method according to claim 1 or claim 2, wherein in the calcining
and leaching step (A), the at least one of said lithium-containing ore,
lithium-
containing mineral and lithium-containing earth (1) is leached out by using
water.
1 l
CA 3054748 2021-10-14

4. The method according to any one of claims 1 to 3, wherein the sodium
chloride obtained in the purification step (B) is obtained by fractional
crystallization or solvent extraction.
5. The method according to any one of claims 1 to 4, characterized in that
the metal chloride (5) or the mixture of metal chlorides (5) used in the
calcining
and leaching step (A) comprises at least one selected from the group
consisting
of potassium chloride, lithium chloride, magnesium chloride and calcium
chloride.
6. The method according to any one of claims 1 to 5, characterized in that
the lithium chloride solution (2) is purified in the purification step (B) by
adjusting
the pH.
7. The method according to any one of claims 1 to 5, wherein the lithium
chloride solution (2) is purified in the purification step (B) by adjusting
the pH to a
pH higher than 8.
8. The method according to claim 6 or claim 7, wherein the lithium
chloride solution (2) is purified in the purification step (B) by increasing
the pH by
adding a lye containing at least one of hydroxides, carbonates and an alkaline
solution.
9. The method according to any one of claims 1 to 8, wherein the cations
removed in the purification step (B) further comprise iron, and the iron
contained
in the lithium chloride solution (2) is oxidized, wherein chemical substances
selected to oxidize the iron are added to the lithium chloride solution (2).
10. The method according to any one of claims 1 to 9, characterized in
that the lithium chloride solution (2) is purified in the purification step
(B) by
adding alkali carbonate.
12
CA 3054748 2021-10-14

11. The method according to claim 10, wherein the alkali carbonate added
in the purification step (B) comprises at least one of lithium carbonate and
sodium
carbonate.
12. The method according to claim 10 or claim 11, wherein the cations
removed in the purification step (B) further comprise calcium.
1 3. The method according to any one of claims 1 to 12, characterized in
that the lithium chloride solution (2) is subject, in the purification step
(B), to an
ion exchange for further reducing the cations, which are contained in the
lithium
chloride solution (2).
14. The method according to claim 13, wherein the ion exchange
comprises a cation exchange.
15. The method according to any one of claims 1 to 14, wherein the
cations removed in the purification step (B) further comprise potassium, and
the
lithium chloride solution (2) is purified in the purification step (B) by
fractional
crystallization, wherein lithium, the sodium and the potassium are separated
from =
each other, and the sodium and the potassium precipitate in the form of sodium
chloride and potassium chloride.
16. The method according to any one of claims 1 to 15, characterized in
that the lithium chloride solution (2) is purified in the purification step
(B) by
solvent extraction, wherein lithium is separated from other alkali salts.
17. The method according to claim 16, wherein the alkali salts comprises
sodium chloride.
18. The method according to any one of claims 1 to 17, characterized in
that the chlorine gas produced in the electrolysis step (C) is recombined with
the
hydrogen produced in the electrolysis step (C) in order to form hydrochloric
acid.
13
CA 3054748 2021-10-14

19. The method according to claim 18, wherein the chlorine gas produced
in the electrolysis step (C) is recombined with the hydrogen produced in the
electrolysis step (C) by means of an HCI producer (6).
20. The method according to any one of claims 1 to 19, wherein the
lithium hydroxide (4) is purified lithium hydroxide.
21. The method according to claim 20, wherein the lithium hydroxide (4) is
highly pure lithium hydroxide having, based on a total amount of ions, less
than
150 ppb (parts per billion) foreign cations.
22. The method according to claim 21, wherein the foreign cations
comprise at least one of calcium and magnesium.
23. The method according to any one of claims 1 to 14, wherein the lithium
chloride solution (2) is purified in the purification step (B) by fractional
crystallization, wherein lithium and sodium are separated from each other, and
sodium precipitates in the form of sodium chloride.
14
CA 3054748 2021-10-14

Description

Note : Les descriptions sont présentées dans la langue officielle dans laquelle elles ont été soumises.


CA 03054748 2019-08-27
Method for Producing Lithium Hydroxide from Lithium-Containing Ore
The invention relates to a method for producing lithium hydroxide, in
particular highly
pure lithium hydroxide, for use in batteries and/or accumulators, from lithium-
containing ore and/or mineral and/or from lithium-containing earths.
For some years, a worldwide increase in demand for the light metal lithium has
already been observed. Lithium, for example in the form of lithium hydroxide
and
lithium carbonate, is mainly used for battery applications, in particular for
rechargeable batteries and/or accumulators, so-called lithium-ion batteries,
due to its
electrochemical properties. These batteries are used in particular in portable
electrical devices, such as mobile phones, laptops or the like. Also, in the
automotive
industry, the lithium-ion battery in electric and hybrid vehicles is becoming
increasingly important as an alternative or add-on to the internal combustion
engine.
In the future, therefore, a further increase in the demand for lithium
hydroxide and
highly pure lithium carbonate can be expected.
The extraction of lithium currently takes place predominantly from brines or
sols,
which are obtained, for example, from salt lakes, by means of an absorption,
evaporation, precipitation and/or ion exchange method. However, these sources
will
not be sufficient for the future demand for lithium. In the article by MESHRAM
et al.,
Extraction of lithium from primary and secondary sources by pre-treatment,
leaching
and separation, in: Hydrometallurgy 150 (October 2014) 192-208, various
natural
sources of lithium and methods for its extraction are disclosed. Accordingly,
the
lithium extraction from ores and minerals, such as pegmatite, spodumene and
petalite or clays, such as hectorite, is more expensive than the extraction
from brines
or sols, but can also be achieved by various methods, such as the sulfate
process or
alkaline digesting. Usually, the extraction of lithium hydroxide from lithium-
containing
ores is performed by addition of sulfate salts or sulfuric acid and through
the
production of lithium carbonate as an intermediate product. The lithium-
containing
ores are first roasted or calcined, resulting in the leachable lithium mineral
13-
spodumene. The 8-spodumene is then leached with sulfuric acid to obtain an
aqueous lithium sulfate solution. By adding lime milk and sodium carbonate,
1

=
CA 03054748 2019-08-27
magnesium, iron and calcium are then gradually removed from the solution. By
adding more sodium carbonate to the solution, up to 98% of the lithium
contained in
the solution can be precipitated as lithium carbonate. In a further step, the
resulting
lithium carbonate is converted into lithium hydroxide.
Recent developments are aimed at the direct production of lithium hydroxide by
the
chlor-alkali process without the prior production of lithium carbonate. For
example,
US 2011/0044882 discloses a process for the preparation of lithium hydroxide
from a
lithium chloride solution. A solution containing lithium, which can be
obtained from
sols or ores, is first concentrated and then subjected to various purification
steps,
such as a pH adjustment for the precipitation of divalent or trivalent ions or
an ion
exchange to reduce the total concentration of calcium and magnesium.
The concentrated and purified lithium chloride solution is subjected to
electrolysis,
wherein a semipermeable membrane is permeable to lithium ions, so that a
lithium
hydroxide solution with chlorine and hydrogen as by-products is obtained.
Chlorine
gas is obtained at the anode of the electrolyzer and lithium hydroxide and
hydrogen
at the cathode. The total amount of calcium and magnesium in the high purity
lithium
hydroxide solution is less than 150 ppb (parts per billion).
In order to produce the lithium chloride solution, AU 2013 20 18 33 B2 and the
parallel application US 2015/152523 propose extracting the lithium contained
in the
ore by leaching f3-spodumene with hydrochloric acid. In a subsequent
purification
step, the resulting solution is purified and concentrated to be subsequently
supplied
to the electrolysis. The lithium extraction rate for the resulting lithium
chloride solution
according to this production route is less than 84%, according to the article
by
NOGUEI RA et al., Comparison of Processes for Lithium Recovery from Lepidolite
by
H2SO4 Digestion or HCI Leaching, Proc. Inter. Con. Min. Mater. and Metal. Eng.
(2014). Further, in the article by YAN et al., Extraction of lithium from
lepidolite using
chlorination roasting ¨ water leaching process, Trans. Nonferrous Met. Soc.
China 22
(2012), 1753, an alternative method for producing a lithium chloride solution
is
known. According to the described method, lepidolite is initially crushed and
mixed
with a mixture of sodium chloride and calcium chloride for chlorination. The
resulting
lithium chloride solution contains 92% of the lithium portion of the ore.
2

Furthermore, in BARBOSA LUCIA I et al.: "Extraction of lithium from [beta]-
spodumene using chlorination roasting with calcium chloride," THERMOCHIMICA
ACTA, vol. 605, (2015), a possible process route for the extraction of lithium
from
lithium-containing ore is known. In particular, the naturally occurring alpha-
crystalline form of spodumene is calcined, in order to transfer the spodumene
into
its beta-crystalline form. In particular, the starting material is roasted
with calcium
chloride in a fixed bed reactor, wherein subsequently the roasted material is
leached out with water.
A disadvantage of the known prior art consists in the high cost and the
sometimes low yield of lithium or lithium hydroxide from the lithium-
containing
ores and/or minerals and/or earths. In particular, in the precipitation of
lithium
carbonate from a lithium sulfate solution, high amounts of sodium carbonate
are
consumed. Sodium carbonate, however, is subject to a highly fluctuating price
curve in the market, whereby a process for the production of lithium hydroxide
via
lithium carbonate as an intermediate product is subject to an increased cost
risk.
In AU 2013 20 18 33 B2, the production of the intermediate lithium carbonate
is
circumvented by recovering lithium hydroxide from the lithium chloride
solution by
means of the chlor-alkali process. The lithium chloride solution is obtained
by
leaching 8-spodumene with hydrochloric acid. Also in this process route, the
yield
of lithium through leaching with hydrochloric acid is comparatively low.
Higher
lithium extraction rates could be achieved through longer process times and an
increase in process temperature, but this results in lower process economic
efficiency.
The object of the invention is therefore to provide in a method for producing
lithium hydroxide from lithium-containing ore and/or mineral and/or lithium-
containing earths, a solution which makes it possible to increase the
extraction
rate of highly pure lithium hydroxide by applying a chlor-alkali process.
This object is achieved by embodiments of the present invention. In the method
according to the invention for producing lithium hydroxide from lithium-
containing
ore and/or mineral and/or lithium-containing earths, in particular for
producing
highly pure lithium
3
CA 3054748 2021-03-09

=
CA 03054748 2019-08-27
hydroxide for use in batteries and/or accumulators, in a calcining and
leaching step, a
lithium chloride solution is produced, the lithium-containing ores and/or
minerals
and/or earths first being roasted by using one or more metal chlorides and/or
a
mixture of metal chlorides, and then leached out, in particular by using
water. In a
subsequent purification step a highly pure lithium chloride solution is
produced, in
particular by removing cations, such as sodium and/or potassium, and/or
calcium,
and/or magnesium, and/or iron, from the lithium chloride solution. In a
subsequent, in
particular final, electrolysis step, lithium hydroxide, in particular highly
pure lithium
hydroxide, is produced, the highly pure lithium chloride solution being
subjected to a
membrane electrolysis process, which produces chlorine gas and hydrogen as
byproducts.
According to the invention, therefore, a direct production of lithium
hydroxide from an
ore and/or mineral and/or earth is proposed, which can take place without the
production of lithium carbonate as an intermediate product, with greatly
reduced use
of chemicals, in particular with greatly reduced use or even without the use
of sodium
carbonate and/or without the use of acids, in particular hydrochloric acid or
sulfuric
acid, in contrast to the known prior art. For this purpose, the lithium-
containing ore
and/or mineral and/or the lithium-containing earth is initially roasted in a
calcining and
leaching step by using metal chlorides, preferably by using a mixture of metal
chlorides. The roasting with metal chlorides instead of hydrochloric acid or
other
chlorides improves the extraction rate and/or yield of lithium contained in
the
produced lithium chloride solution based on the lithium content of the ore
and/or the
mineral and/or the earth. For leaching the lithium chloride water is
preferably used,
also in view of the subsequent electrolysis step.
In a purification step, a highly pure lithium chloride solution is obtained
from the
produced, still contaminated lithium chloride solution. This means, in
particular, that
the proportion of lithium in the solution is increased compared to other ions.
In
particular, cations, such as sodium and/or potassium and/or calcium and/or
magnesium and/or iron, are removed from the lithium chloride solution. This is
likewise advantageous in view of the electrolysis step to be carried out
subsequently,
in which unwanted cations are deposited on the cathode in addition to the
lithium to
4

CA 03054748 2019-08-27
be extracted.
The invention thus combines the advantages of two methods known in the art for
the
production of lithium hydroxide, by adopting individual steps of a production
method
using the extraction of lithium carbonate as an intermediate product in a
chlor-alkali
production route and/or by replacing and/or adapting individual steps of the
chlor-
alkali production route to the same.
In an advantageous embodiment, the method according to the invention is
characterized in that the one or more metal chlorides or the mixture of metal
chlorides used in the calcining and leaching step comprises/comprise at least
sodium
chloride and/or potassium chloride and/or lithium chloride and/or magnesium
chloride
and/or calcium chloride. Preferably, a mixture of sodium chloride and calcium
chloride is used for roasting, because the melting temperature of the mixture
is well
below the melting temperature of the other metal chlorides. Due to the
increased
fluidity of the melt obtained at a lower temperature, the chlorides more
readily diffuse
to the surface of the lithium-containing ore and/or mineral and/or the lithium-
containing earth, thereby improving lithium extraction. In comparison to the
sulfate
process, in which the lithium-containing ore and/or mineral and/or the lithium-
containing earth, in particular lepidolite, is roasted and the resulting P-
spodumene is
digested by means of sulfuric acid, roasting with salts, in particular with
metal
chlorides, provides an increased lithium yield and improved roasting
properties. The
excess salts contained in the lithium chloride solution are usually removed
with soda
ash, i.e. with sodium carbonate. The leaching of the solution is
advantageously
carried out with water, so that lithium hydroxide and HCI can then be obtained
from
the prepared lithium chloride solution by means of the chlor-alkali process.
Advantageously, before the electrolysis step, cations contained in the lithium
chloride
solution and affecting the electrolysis, in particular iron and/or calcium
and/or
magnesium, should be reduced to very low concentrations. In an advantageous
embodiment, the invention therefore provides that the lithium chloride
solution is
purified in the purification step by adjusting the pH of the lithium chloride
solution, in
particular to a pH higher than 8, wherein the pH is preferably increased by
adding a

=
CA 03054748 2019-08-27
lye containing in particular hydroxides and/or carbonates and/or an alkaline
solution.
By increasing the pH, in particular to a pH greater than 8, undesirable ions,
such as
aluminum, iron, magnesium and manganese, can be precipitated as corresponding
hydroxides from the lithium chloride solution and then removed. Another
possibility is
provided, for example, by the oxidation of iron contained in the lithium
chloride
solution, wherein chemical substances, which are suitable for the oxidation of
iron,
are added to the lithium chloride solution. Expediently, calcium can be
removed from
the lithium chloride solution in the purification step by adding alkali
carbonate, in
particular lithium carbonate and/or sodium carbonate. The invention therefore
provides in a further embodiment that the lithium chloride solution is
purified in the
purification step by adding alkali carbonate, in particular lithium carbonate
and/or
sodium carbonate, wherein, in particular, calcium is removed from the lithium
chloride
solution. The resulting calcium carbonate can be separated from the lithium
chloride
solution, whereas the added lithium is extracted in the electrolysis step.
Furthermore, the prepared lithium chloride solution may also be subject to ion
exchange, in particular cation exchange, to further reduce the cations
contained in
the lithium chloride solution. The invention therefore also provides that the
lithium
chloride solution in the purification step is subject to an ion exchange, in
particular a
cation exchange, for further reduction of the cations contained in the lithium
chloride
solution.
Likewise useful is an optional purification of the lithium chloride solution
in the
purification step by fractional crystallization, wherein lithium and/or sodium
and/or
potassium are separated from each other and the sodium and/or potassium
precipitate in the form of sodium chloride or potassium chloride, as provided
by a
further development of the invention.
The lithium chloride solution can also be further purified by solvent
extraction. In this
case, the lithium to be extracted is separated from other alkali metal salts,
in
particular sodium chloride. The invention is therefore further characterized
in that the
lithium chloride solution is purified in the purification step by solvent
extraction,
wherein lithium is separated from other alkali salts, in particular sodium
chloride.
6

=
CA 03054748 2019-08-27
According to the invention, sodium chloride obtained during the purification
step, in
particular by fractional crystallization or solvent extraction, is used for
roasting the
lithium-containing ores and/or minerals and/or earths and is fed to the
calcining and
leaching step. In the invention, it is therefore also provided that the sodium
chloride
obtained in the purification step is used in the calcining and leaching step
for roasting
the lithium-containing ores and/or minerals and/or the lithium-containing
earths.
In this way, the need for sodium chloride for the method according to the
invention
can be further reduced.
Further possible solutions known from the prior art for the purification of
the lithium
chloride solution can alternatively or optionally be applied in the previously
described
purification solutions during the purification step of the production method
according
to the invention.
To increase the efficiency of the method according to the invention it is
finally
provided, in a further development of the invention, that the chlorine gas
generated in
the electrolysis step is recombined with the hydrogen also generated in the
electrolysis step, in particular by means of an HCI producer, in order to form
hydrochloric acid. The hydrochloric acid produced thereby can be removed as a
by-
product of the lithium hydroxide production process.
The invention is explained in more detail below by way of an example with
reference
to a drawing. In particular
The Figure shows a flow diagram of an exemplary method according to the
invention
for the production of lithium hydroxide from lithium-containing ore and/or
mineral
and/or a lithium-containing earth.
The Figure shows a flow diagram of an exemplary method according to the
invention
for the production of lithium hydroxide from lithium-containing ore and/or
mineral
and/or a lithium-containing earth (1). According to the exemplary embodiment,
the
7

CA 03054748 2019-08-27
lithium-containing mineral or earth (1) spodumene (LiAl[Si206]) serves as a
starting
material for the production of lithium hydroxide (4), which is extracted as
the end
product of the production method according to the invention for further use
for battery
applications, in particular for rechargeable lithium-ion batteries. In
particular, by
means of the production method according to the invention, it is possible to
obtain
highly pure lithium hydroxide, whose total content of disturbing foreign
cations, such
as calcium and magnesium, is less than 150 ppb (parts per billion). Spodumene
is
found in lithium-containing ores (1), in particular in lepidolite. The
preparation of the
lithium-containing ore and/or mineral (1) for further processing according to
the
invention can be carried out in the usual way by crushing and grinding the
rocks. The
following is the overall reaction of the inventive embodiment for the
production of
lithium hydroxide (4) from the lithium-containing mineral (1) spodumene:
2 LiAlSi206 + 2 H20 + CaCl2 -> 2 LiOH + CaA12514012
In a calcining and leaching step (A), the lithium-containing mineral (1)
spodumene is
initially roasted at a temperature of 880 C for 30 minutes with the addition
of a
mixture of metal chlorides (5). In the exemplary embodiment, since the melting
point
of a mixture with lepidolite, depending on the respective mixing proportions,
is below
the melting point of mixtures with other metal chlorides, the mixture is
composed of
sodium and calcium chloride, and thus an extraction of the lithium is favored.
The
leaching is then carried out with water at a temperature of 90 C. Compared
with
leaching with acid, for example hydrochloric acid or sulfuric acid, the use of
water is
safer, less expensive and advantageous for a subsequent chlor-alkali process.
The yield, i.e. the extracted amount of lithium relative to the total amount
of lithium
contained in the starting product is at least 92% in the exemplary embodiment.
The
proportion of excess salts in the still contaminated lithium chloride solution
(2) is
about 31%. The excretion of the excess salts can be carried out by addition of
alkali
carbonate, wherein expediently sodium carbonate or alternatively lithium
carbonate is
added. A precipitation reaction for calcium chloride by addition of sodium
carbonate
is as follows:
8

-
CA 03054748 2019-08-27
CaCl2 + Na2003-> CaCO3 + 2 NaCI
In a purification step (B), the lithium chloride solution (2) is further
purified in order to
obtain a highly pure lithium chloride solution (3). A highly pure lithium
chloride
solution (3) is characterized in particular by a very low proportion of
disturbing foreign
cations, such as sodium, potassium, magnesium, calcium and iron. In
particular, the
total amount of magnesium and calcium is less than 150 ppb (parts per billion)
based
on the total amount of ions. As described above, the removal of the foreign
cations
and other purification can be carried out by adjusting the pH to pH > 8 of the
lithium
chloride solution (2) by adding chemicals for oxidizing iron, by fractional
crystallization separation, solvent extraction and/or by ion exchange. If a
separation
between lithium and sodium or lithium and other alkali metal salts is carried
out by
means of fractional crystallization and/or solvent extraction, separated
sodium
chloride and/or if appropriate calcium chloride can be used for roasting the
lithium-
containing mineral (1) spodumene in the calcining and leaching step (A). In
this way,
waste products obtained in the purification step (B) can be supplied to the
calcining
and leaching step (A) in order to reduce the requirement for substances
required for
the production process according to the invention, in particular sodium
chloride
and/or calcium chloride.
The highly pure lithium chloride solution (3) obtained by the purification
step (B) is
subjected to an electrolysis step (C) to obtain lithium hydroxide (4). By
means of a
membrane electrolyzing device having a semipermeable membrane, a chlor-alkali
process is carried out in the electrolysis step (C). An anode and a cathode of
the
electrolyzer are separated by the semipermeable membrane. By applying a
voltage,
the ions contained in the highly pure lithium chloride solution (3) are
separated from
each other, wherein lithium hydroxide (4) is obtained as the main product and
hydrogen as a by-product of the electrolysis at the cathode and chlorine gas
is
extracted as a by-product at the anode. Since disturbing foreign cations have
already
been removed from the lithium chloride solution (2) in the purification step
(B) to
obtain a highly pure lithium chloride solution (3), the lithium hydroxide (4)
accumulating at the cathode can also be extracted in a highly pure state, i.e.
almost
free of interfering cations.
9

CA 03054748 2019-08-27
The extracted by-products, hydrogen and chlorine gas, can be recombined by an
HCI
producer (6) with hydrochloric acid. By producing a readily available by-
product, such
as hydrochloric acid, the cost-effectiveness of the process according to the
invention
can be further increased.
The extracted, in particular highly pure lithium hydroxide is suitable for use
in battery
applications, in particular for use in rechargeable lithium-ion batteries or
for further
processing, for example to obtain lithium carbonate, in particular highly pure
lithium
carbonate.
List of reference numerals:
1 lithium-containing ores and/or minerals and/or earths
2 lithium chloride solution
3 highly pure lithium chloride solution
4 lithium hydroxide
metal chlorides
6 HCI producer
A calcining and leaching step
B purification step
C electrolysis step

Dessin représentatif
Une figure unique qui représente un dessin illustrant l'invention.
États administratifs

2024-08-01 : Dans le cadre de la transition vers les Brevets de nouvelle génération (BNG), la base de données sur les brevets canadiens (BDBC) contient désormais un Historique d'événement plus détaillé, qui reproduit le Journal des événements de notre nouvelle solution interne.

Veuillez noter que les événements débutant par « Inactive : » se réfèrent à des événements qui ne sont plus utilisés dans notre nouvelle solution interne.

Pour une meilleure compréhension de l'état de la demande ou brevet qui figure sur cette page, la rubrique Mise en garde , et les descriptions de Brevet , Historique d'événement , Taxes périodiques et Historique des paiements devraient être consultées.

Historique d'événement

Description Date
Inactive : Octroit téléchargé 2022-10-14
Inactive : Octroit téléchargé 2022-10-14
Lettre envoyée 2022-10-04
Accordé par délivrance 2022-10-04
Inactive : Page couverture publiée 2022-10-03
Inactive : Conformité - PCT: Réponse reçue 2022-07-14
Préoctroi 2022-07-14
Inactive : Taxe finale reçue 2022-07-14
Un avis d'acceptation est envoyé 2022-03-25
Lettre envoyée 2022-03-25
Un avis d'acceptation est envoyé 2022-03-25
Inactive : Approuvée aux fins d'acceptation (AFA) 2022-02-09
Inactive : Q2 échoué 2022-02-09
Modification reçue - modification volontaire 2021-10-14
Modification reçue - modification volontaire 2021-10-14
Modification reçue - modification volontaire 2021-10-08
Modification reçue - réponse à une demande de l'examinateur 2021-10-08
Rapport d'examen 2021-06-10
Inactive : Rapport - Aucun CQ 2021-05-26
Modification reçue - modification volontaire 2021-03-09
Modification reçue - réponse à une demande de l'examinateur 2021-03-04
Modification reçue - modification volontaire 2021-03-04
Rapport d'examen 2020-11-17
Représentant commun nommé 2020-11-07
Inactive : Rapport - Aucun CQ 2020-11-04
Inactive : IPRP reçu 2020-02-18
Représentant commun nommé 2019-10-30
Représentant commun nommé 2019-10-30
Inactive : Page couverture publiée 2019-09-25
Lettre envoyée 2019-09-19
Inactive : Acc. récept. de l'entrée phase nat. - RE 2019-09-17
Lettre envoyée 2019-09-17
Inactive : Transfert individuel 2019-09-13
Inactive : CIB en 1re position 2019-09-11
Inactive : CIB attribuée 2019-09-11
Inactive : CIB attribuée 2019-09-11
Inactive : CIB attribuée 2019-09-11
Inactive : CIB attribuée 2019-09-11
Inactive : CIB attribuée 2019-09-11
Inactive : CIB attribuée 2019-09-11
Inactive : CIB attribuée 2019-09-11
Demande reçue - PCT 2019-09-11
Exigences pour l'entrée dans la phase nationale - jugée conforme 2019-08-27
Exigences pour une requête d'examen - jugée conforme 2019-08-27
Toutes les exigences pour l'examen - jugée conforme 2019-08-27
Demande publiée (accessible au public) 2018-09-07

Historique d'abandonnement

Il n'y a pas d'historique d'abandonnement

Taxes périodiques

Le dernier paiement a été reçu le 2022-01-24

Avis : Si le paiement en totalité n'a pas été reçu au plus tard à la date indiquée, une taxe supplémentaire peut être imposée, soit une des taxes suivantes :

  • taxe de rétablissement ;
  • taxe pour paiement en souffrance ; ou
  • taxe additionnelle pour le renversement d'une péremption réputée.

Veuillez vous référer à la page web des taxes sur les brevets de l'OPIC pour voir tous les montants actuels des taxes.

Historique des taxes

Type de taxes Anniversaire Échéance Date payée
Requête d'examen - générale 2019-08-27
Taxe nationale de base - générale 2019-08-27
Enregistrement d'un document 2019-09-13
TM (demande, 2e anniv.) - générale 02 2020-02-05 2020-01-27
TM (demande, 3e anniv.) - générale 03 2021-02-05 2021-01-25
TM (demande, 4e anniv.) - générale 04 2022-02-07 2022-01-24
Taxe finale - générale 2022-07-25 2022-07-14
TM (brevet, 5e anniv.) - générale 2023-02-06 2023-01-23
TM (brevet, 6e anniv.) - générale 2024-02-05 2024-01-22
Titulaires au dossier

Les titulaires actuels et antérieures au dossier sont affichés en ordre alphabétique.

Titulaires actuels au dossier
SMS GROUP GMBH
Titulaires antérieures au dossier
MOSTAFA BIGLARI
Les propriétaires antérieurs qui ne figurent pas dans la liste des « Propriétaires au dossier » apparaîtront dans d'autres documents au dossier.
Documents

Pour visionner les fichiers sélectionnés, entrer le code reCAPTCHA :



Pour visualiser une image, cliquer sur un lien dans la colonne description du document. Pour télécharger l'image (les images), cliquer l'une ou plusieurs cases à cocher dans la première colonne et ensuite cliquer sur le bouton "Télécharger sélection en format PDF (archive Zip)" ou le bouton "Télécharger sélection (en un fichier PDF fusionné)".

Liste des documents de brevet publiés et non publiés sur la BDBC .

Si vous avez des difficultés à accéder au contenu, veuillez communiquer avec le Centre de services à la clientèle au 1-866-997-1936, ou envoyer un courriel au Centre de service à la clientèle de l'OPIC.


Description du
Document 
Date
(aaaa-mm-jj) 
Nombre de pages   Taille de l'image (Ko) 
Description 2019-08-27 10 476
Abrégé 2019-08-27 2 109
Dessins 2019-08-27 1 14
Revendications 2019-08-27 2 86
Dessin représentatif 2019-08-27 1 15
Page couverture 2019-09-25 2 55
Abrégé 2021-03-09 1 24
Revendications 2021-03-09 4 137
Description 2021-03-09 10 490
Revendications 2021-10-08 4 115
Revendications 2021-10-14 4 139
Page couverture 2022-09-07 1 50
Dessin représentatif 2022-09-07 1 9
Paiement de taxe périodique 2024-01-22 18 726
Courtoisie - Certificat d'enregistrement (document(s) connexe(s)) 2019-09-19 1 105
Accusé de réception de la requête d'examen 2019-09-17 1 174
Avis d'entree dans la phase nationale 2019-09-17 1 202
Rappel de taxe de maintien due 2019-10-08 1 112
Avis du commissaire - Demande jugée acceptable 2022-03-25 1 571
Certificat électronique d'octroi 2022-10-04 1 2 527
Rapport prélim. intl. sur la brevetabilité 2019-08-27 34 3 548
Traité de coopération en matière de brevets (PCT) 2019-08-27 1 35
Rapport de recherche internationale 2019-08-27 6 198
Modification - Description 2019-08-27 12 530
Modification - Revendication 2019-08-27 3 97
Modification - Dessins 2019-08-27 1 12
Poursuite - Modification 2019-08-27 2 84
Demande d'entrée en phase nationale 2019-08-27 5 134
Rapport d'examen préliminaire international 2019-09-28 5 206
Rapport d'examen préliminaire international 2020-02-18 1 43
Demande de l'examinateur 2020-11-17 4 195
Modification / réponse à un rapport 2021-03-09 18 648
Modification / réponse à un rapport 2021-03-04 17 489
Demande de l'examinateur 2021-06-10 3 153
Modification / réponse à un rapport 2021-10-08 12 356
Modification / réponse à un rapport 2021-10-14 12 403
Taxe finale / Taxe d'achèvement - PCT 2022-07-14 1 59