Sélection de la langue

Search

Sommaire du brevet 3103944 

Énoncé de désistement de responsabilité concernant l'information provenant de tiers

Une partie des informations de ce site Web a été fournie par des sources externes. Le gouvernement du Canada n'assume aucune responsabilité concernant la précision, l'actualité ou la fiabilité des informations fournies par les sources externes. Les utilisateurs qui désirent employer cette information devraient consulter directement la source des informations. Le contenu fourni par les sources externes n'est pas assujetti aux exigences sur les langues officielles, la protection des renseignements personnels et l'accessibilité.

Disponibilité de l'Abrégé et des Revendications

L'apparition de différences dans le texte et l'image des Revendications et de l'Abrégé dépend du moment auquel le document est publié. Les textes des Revendications et de l'Abrégé sont affichés :

  • lorsque la demande peut être examinée par le public;
  • lorsque le brevet est émis (délivrance).
(12) Brevet: (11) CA 3103944
(54) Titre français: CONFIGURATION DE BOBINE DE DETECTEUR DE METAL POUR ELIMINER UN EFFET D'ORIENTATION
(54) Titre anglais: METAL DETECTOR COIL CONFIGURATION TO ELIMINATE ORIENTATION EFFECT
Statut: Accordé et délivré
Données bibliographiques
(51) Classification internationale des brevets (CIB):
  • G1V 3/10 (2006.01)
(72) Inventeurs :
  • JUKKOLA, JAMES (Etats-Unis d'Amérique)
  • SMITH, PAUL (Etats-Unis d'Amérique)
(73) Titulaires :
  • ERIEZ MANUFACTURING CO.
(71) Demandeurs :
  • ERIEZ MANUFACTURING CO. (Etats-Unis d'Amérique)
(74) Agent: GOWLING WLG (CANADA) LLP
(74) Co-agent:
(45) Délivré: 2023-08-01
(86) Date de dépôt PCT: 2019-06-20
(87) Mise à la disponibilité du public: 2019-12-26
Requête d'examen: 2020-12-15
Licence disponible: S.O.
Cédé au domaine public: S.O.
(25) Langue des documents déposés: Anglais

Traité de coopération en matière de brevets (PCT): Oui
(86) Numéro de la demande PCT: PCT/US2019/038209
(87) Numéro de publication internationale PCT: US2019038209
(85) Entrée nationale: 2020-12-15

(30) Données de priorité de la demande:
Numéro de la demande Pays / territoire Date
62/687,298 (Etats-Unis d'Amérique) 2018-06-20

Abrégés

Abrégé français

Un système de détection de métal comprend une seule ouverture comprenant deux ensembles ou plus de bobines de détection qui entourent le périmètre de l'ouverture. Un trajet d'écoulement de matériaux passe à travers l'ouverture. Chaque ensemble de bobines de détection comprend une bobine émettrice et deux bobines réceptrices, la bobine émettrice étant située entre les deux bobines réceptrices. Chaque ensemble de bobines de détection est à un angle différent par rapport au trajet d'écoulement.


Abrégé anglais

A system for metal detection comprises a single aperture comprising two or more sets of detection coils that surround the perimeter of the aperture. A flow path of materials passes through the aperture. Each set of detection coils comprises a transmitter and two receiver coils, with the transmitter coil located between the two receiver coils. Each set of detection coils is at a different angle relative to the flow path.

Revendications

Note : Les revendications sont présentées dans la langue officielle dans laquelle elles ont été soumises.


Claims
What is claimed is:
1. A system for metal detection comprising:
a single aperture comprising two or more sets of detection coils that surround
the perimeter of
said aperture wherein each said detection coil defines a detection plane
within the aperture;
a flow path of materials that passes through said aperture;
each said set of detection coils comprises a transmitter coil and two receiver
coils, with said
transmitter coil located between said two receiver coils; and
each set of said detection coils is at a different angle relative to said flow
path such that said
flow path is subjected to each of the detection planes simultaneously.
2. The system for metal detection of claim 1 wherein one set of detection
coils is at an angle of 45
degrees relative to said flow path.
3. The system for metal detection of claim J. wherein one set of detection
coils is at an angle of 135
degrees relative to said flow path.
4. The system for metal detection of claim 1 further comprising said flow
path is one of a conveyor
belt, a liquid line, or free-falling material.
5. The system for metal detection of claim 1 wherein said aperture is
circular or a polygon.
6. The system for metal detection of claim 3. wherein said aperture
comprises three sets of said
detection coils that surround the perimeter of said aperture.
7. The system for metal detection of claim 1 wherein said detection coils
operate in the range of
lkHz to 1MHz.
8. The system for metal detection of claim 1 wherein each said set of
detection coils operates in a
different detection frequency.
8
Date Recue/Date Received 2022-03-09

9. The
system for metal detection of claim 1 wherein each said set of detection coils
operates in
the same detection frequency.
tt49848823
9
Date Recue/Date Received 2022-03-09

Description

Note : Les descriptions sont présentées dans la langue officielle dans laquelle elles ont été soumises.


CA 03103944 2020-12-15
WO 2019/246378 PCT/US2019/038209
METAL DETECTOR COIL CONFIGURATION TO ELIMINATE ORIENTATION EFFECT
Background
Metal detectors are used to detect metals and/or metal contaminants in product
streams. Metal
detectors detect metal as they pass through a plane of detection defined by
the orientation of detection
coils within the system. There are limitations in the ability of various metal
detector systems to detect
metals based on the orientation of the metal object as it passes through the
plane of detection. What is
needed is a solution that eliminates or reduces the orientation effect that
prior art metal detectors are
prone to.
Summary
What is presented is a system for metal detection comprising a single aperture
that further
comprises two or more sets of detection coils that surround the perimeter of
the aperture. A flow path
of materials passes through the aperture. Each set of detection coils
comprises a transmitter coil and
two receiver coils, with the transmitter coil located between the two receiver
coils. Each set of detection
coils is at a different angle relative to the flow path. In some embodiments
of metal detection systems,
the aperture could comprise three sets of detection coils that surround the
perimeter of the aperture.
In some embodiments, one set of detection coils is at an angle of 45 degrees
relative to the flow
path. In some embodiments, one set of detection coils is at an angle of 135
degrees relative to the flow
path. In various embodiments, the flow path is one of a conveyor belt, a
liquid line, or free-falling
material. The aperture may be circular or a polygon. In various embodiments,
the detection coils
operate in the range of 1kHz to 1MHz. Each set of detection coils may be
operated in a different
detection frequency or in the same detection frequency.
1

CA 03103944 2020-12-15
WO 2019/246378 PCT/US2019/038209
Those skilled in the art will realize that this invention is capable of
embodiments that are
different from those shown and that details of the apparatus and methods can
be changed in various
manners without departing from the scope of this invention. Accordingly, the
drawings and descriptions
are to be regarded as including such equivalent embodiments as do not depart
from the spirit and scope
of this invention.
Brief Description of Drawings
For a more complete understanding and appreciation of this invention, and its
many
advantages, reference will be made to the following detailed description taken
in conjunction with the
accompanying drawings.
FIG. 1 shows a simplified schematic of a prior art metal detection system;
FIG. 2 shows a simplified schematic of the principle of operation of metal
detection systems;
FIG. 3 depicts a metal contaminant passing through a detection plane in
various configurations;
FIG. 4 depicts a simplified schematic of a prior art metal detection system
comprising two
separate metal detection systems with two apertures at different angles to the
material flow path;
FIG. 5 is a simplified schematic of an embodiment of the metal detection
system having two sets
of detection coils;
FIG. 6 is a simplified schematic of another embodiment of the metal detection
system having
two sets of detection coils;
FIG. 7 depicts a metal contaminant passing through a detection plane in
various configurations;
FIG. 8 depicts a metal contaminant passing through a detection plane in
various configurations;
and
FIG. 9 is a simplified schematic of another embodiment of the metal detection
system having
three sets of detection coils.
2

CA 03103944 2020-12-15
WO 2019/246378 PCT/US2019/038209
Detailed Description
Referring to the drawings, some of the reference numerals are used to
designate the same or
corresponding parts through several of the embodiments and figures shown and
described.
Corresponding parts are denoted in different embodiments with the addition of
lowercase letters.
Variations of corresponding parts in form or function that are depicted in the
figures are described. It
will be understood that variations in the embodiments can generally be
interchanged without deviating
from the invention.
FIG. 1 shows a simplified schematic of a prior art metal detection system 10.
The system
comprises an aperture 12 through which a flow path of materials passes
through. A single set of
detection coils 14 surrounds the perimeter of the aperture 12. The set of
detection coils 14 comprise a
transmitter coil 16 (also called an oscillator coil) and two receiver coils
18, with the transmitter coil 16
located between the two receiver coils 18.
FIG. 2 illustrates the basic operating principle of the type of metal detector
to which this
disclosure applies. A single voltage is driven through the transmitter coil 16
by an oscillator (not shown).
The two receiver coils 18 are located on a common axis with the transmitter
coil 16 and are coupled into
the electromagnetic field of the transmitter coil 18 in such a manner that the
system is in balance and
the induced voltages in the two receiver coils 16 cancel. Material to be
screened that passes through the
aperture 12 creates a distortion in the electromagnetic field if there is any
metal passing along with the
material in the flow path through the aperture 12. This distortion results in
a difference in the induced
voltages in the two secondary coils. The voltage difference is amplified,
digitized, and filtered to extract
detection information that is used to decide whether the signal represents
metal or the user's product.
If the signal represents the user's product, it is ignored. If it represents
metal that exceeds a pre-set
sensitivity level, the detector generates a detection signal that initiates
reject and/or alarm actions.
3

CA 03103944 2020-12-15
WO 2019/246378 PCT/US2019/038209
Referring to FIG. 3, for long thin metal contaminants 22 (referred to herein
as a "wire," but
could be a needle, staple, metal shaving, etc.), metal detectors typically
have more difficulty detecting
the contaminant in one orientation than in other orientations. For example, if
a wire 22 passes through
the metal detector with its long dimension parallel to the detection plane 20
of the detector coil, it may
produce a significantly larger signal than if the same wire 22 passed through
in an orientation
perpendicular to the detection plane 20 of the detector coil. This is referred
to as the "orientation
effect," and it occurs because the detection signal is related to the area of
eddy current loops which are
developed in the wire 22. In FIG. 3 (a)-(d) shows a cylindrical contaminant
wire 22 passing through the
detection plane 20 at several angles, and FIG. 3 (a1)-(di) shows the
corresponding cross-sectional areas
of the wire 22 intersecting the detection plane 20.
If a metal contaminant 22 type develops eddy current loops parallel to the
detection plane 20 of
the detector coils, they produce their largest signal in orientation shown in
FIG. 3(a), because that gives
the largest area for the eddy current loops as shown in FIG 3(ai). The
contaminant 22 orientation shown
in FIG. 3 (d) has the smallest cross-sectional area shown in FIG. 3(di), thus
producing the smallest signal.
Some metal contaminant 22 types are the opposite, developing their signal
based on cross-
sectional area perpendicular to the detection plane 20. For these metal types,
FIG. 3 (d) is the best case
for detection sensitivity.
Metal detector sensitivity is usually specified based on detecting a metal
sphere, which has no
orientation effect. For a sphere, the cross-sectional area parallel to the
plane is equal to the area
perpendicular to the plane, and the cross-section is always the same
regardless of rotation of the
sphere. The smallest sphere (of a given metal type) which is detectable by a
given metal detector is
called the "rated metal sphere" for that detector and metal type.
A wire can arrive at the detector in any random orientation, so assuming the
worst case, and the
sensitivity for wires must be specified based on the diameter of the wire,
regardless of length. Wires
4

CA 03103944 2020-12-15
WO 2019/246378 PCT/US2019/038209
with a diameter greater than or equal to the rated metal sphere diameter will
typically be detectable
even in the worst orientation. A smaller-diameter wire, even if relatively
large compared to the rated
metal sphere size, has a risk of passing through without being detected.
Most metal detector installations simply accept (or ignore) this risk. Where
orientation effect
was considered an unacceptable risk, FIG 4 shows an example of a prior art
metal detector 10
installations using two separate metal detectors 10, installed on the same
conveyor line 24 on which a
will material stream pass through. The metal detectors 10 are oriented at
different angles relative to the
conveyor line 24. This has several disadvantages: it requires two complete
metal detectors 10; it
requires a longer conveyor line 24 system; in order to be able to be placed at
an angle, the metal
detectors 10 must be much wider than the conveyor line 24; it assumes that the
wire does not change
orientation while traveling between the two metal detectors 10; and with two
metal detectors 10 it still
does not completely eliminate orientation effect for metal types which have a
worst case parallel to the
coil, as explained later.
FIG. 5 shows a simplified schematic of metal detector 10a disclosed herein
that addresses some
of the limitations of the prior art systems. The system comprises an aperture
12a through which a flow
path of materials passes through. Two sets of detection coils 14a surrounds
the perimeter of the
aperture 12a. Each set of detection coils 14a comprises a transmitter coil 16a
and two receiver coils 18a,
with the transmitter coil 16a located between the two receiver coils 18a. In
this embodiment the
detector coils 14a are crossed on the top and bottom of the aperture 12a. The
aperture 12a is shown as
a having a rectangular opening in the figures, but it could be any shape
required by the application such
as any other polygon or a circle. The flow path of material that passes
through the aperture 12a may be
a conveyor belt, a liquid line, or free-falling material.
The system presented herein comprises two sets of metal detection coils 14a
within one metal
detector 10a housing. Each set of detection coils 14a comprises a transmitter
coil 16a and two receiver

CA 03103944 2020-12-15
WO 2019/246378 PCT/US2019/038209
coils 18a, all parallel to each other. However, each set of detection coils
14a is at a different angle
relative to the direction of material travel through the aperture 12a. The
detection coils 14a operate in
a detection frequency in the range of 1kHz to 1MHz.The separate sets of
detection coils 14a are
operated preferably at different detection frequencies, but it is possible
they could be operated at the
same detection frequency.
In some embodiments of powering the transmitter coils 16a, the separate
transmitter coils 16a
interfere with each other if there is mutual inductance coupling each
transmitter coil 16a, so the
transmitter coils 16a must be separated by a great enough angle to reduce this
mutual inductance to an
acceptable level. A 90 angle between each detection coil 14a system reduces
the mutual inductance to
the minimum possible. Other angles are possible to reduce interference from
each other, but a large
angle (ideally 90 ) is still desirable, for the maximum reduction of
orientation effect. Embodiments
where one set of detection coils is at an angle of 45 relative to the flow
path have found to be effective.
Embodiments where one set of detection coils is at an angle of 135 relative
to the flow path have also
found to be effective. However, using a large angle has a disadvantage of
requiring a larger metal
detector (i.e., a longer tunnel in the direction of product travel).
FIG. 6 shows another embodiment of the metal detection system 10b having two
sets of
detection coils 14b in which the detector coils 14b are crossed on the sides
of the aperture.
As illustrated in FIG. 7, in the systems presented, metal contaminants 22 are
simultaneously
subjected to detection planes 20 from more than one angle. So, if the
contaminant 22 is in the worst
orientation for detection at one detection plane 20, it can be in a more
favorable orientation for the
other detection plane 20. For metal types which have the worst-case detection
perpendicular to the
detection plane 20, two sets of detection planes 20 are enough. The two sets
of detections coils form
intersecting detection planes 20 as shown in FIG. 7 (a)-(b) and (c)-(d). A
wire contaminant 22 in any
orientation cannot be perpendicular to both detection planes 20.
6

CA 03103944 2020-12-15
WO 2019/246378 PCT/US2019/038209
Metal contaminant 22 types which have the worst-case detection parallel to the
detection plane
20 will require three sets of detection planes 20 to eliminate the orientation
effect. Two sets detection
planes 20 having orientations as shown in FIG. 7 would greatly reduce the
problem. However, FIG. 8 (a)-
(b) shows there would still be one orientation at which a contaminant wire 22
could be parallel to two
detection planes 20, so a third detection plane 20 as shown in FIG. 8 (c) is
needed.
FIG. 9 shows an embodiment of the metal detection system 10c having three sets
of detection
coils 14c for three different intersecting angles of detection planes.
Embodiments with four sets of
detection coils are possible but would have limited utility for eliminating
orientation effects since all
orientations are able to be handled by three sets of detection coils.
This invention has been described with reference to several preferred
embodiments. Many
modifications and alterations will occur to others upon reading and
understanding the preceding
specification. It is intended that the invention be construed as including all
such alterations and
modifications in so far as they come within the scope of the appended claims
or the equivalents of these
claims.
7

Dessin représentatif
Une figure unique qui représente un dessin illustrant l'invention.
États administratifs

2024-08-01 : Dans le cadre de la transition vers les Brevets de nouvelle génération (BNG), la base de données sur les brevets canadiens (BDBC) contient désormais un Historique d'événement plus détaillé, qui reproduit le Journal des événements de notre nouvelle solution interne.

Veuillez noter que les événements débutant par « Inactive : » se réfèrent à des événements qui ne sont plus utilisés dans notre nouvelle solution interne.

Pour une meilleure compréhension de l'état de la demande ou brevet qui figure sur cette page, la rubrique Mise en garde , et les descriptions de Brevet , Historique d'événement , Taxes périodiques et Historique des paiements devraient être consultées.

Historique d'événement

Description Date
Inactive : Octroit téléchargé 2023-08-02
Inactive : Octroit téléchargé 2023-08-02
Lettre envoyée 2023-08-01
Accordé par délivrance 2023-08-01
Inactive : Page couverture publiée 2023-07-31
Préoctroi 2023-05-29
Inactive : Taxe finale reçue 2023-05-29
month 2023-05-02
Lettre envoyée 2023-05-02
Un avis d'acceptation est envoyé 2023-05-02
Inactive : Approuvée aux fins d'acceptation (AFA) 2023-04-24
Inactive : Q2 réussi 2023-04-24
Modification reçue - réponse à une demande de l'examinateur 2022-11-30
Modification reçue - modification volontaire 2022-11-30
Rapport d'examen 2022-09-08
Inactive : Rapport - Aucun CQ 2022-08-10
Inactive : Supprimer l'abandon 2022-06-15
Inactive : Lettre officielle 2022-06-15
Réputée abandonnée - omission de répondre à une demande de l'examinateur 2022-04-01
Modification reçue - réponse à une demande de l'examinateur 2022-03-09
Modification reçue - modification volontaire 2022-03-09
Rapport d'examen 2021-12-01
Inactive : Rapport - Aucun CQ 2021-11-30
Représentant commun nommé 2021-11-13
Inactive : Page couverture publiée 2021-01-22
Lettre envoyée 2021-01-14
Lettre envoyée 2021-01-08
Exigences applicables à la revendication de priorité - jugée conforme 2021-01-08
Demande reçue - PCT 2021-01-05
Demande de priorité reçue 2021-01-05
Inactive : CIB attribuée 2021-01-05
Inactive : CIB en 1re position 2021-01-05
Exigences pour l'entrée dans la phase nationale - jugée conforme 2020-12-15
Exigences pour une requête d'examen - jugée conforme 2020-12-15
Toutes les exigences pour l'examen - jugée conforme 2020-12-15
Demande publiée (accessible au public) 2019-12-26

Historique d'abandonnement

Date d'abandonnement Raison Date de rétablissement
2022-04-01

Taxes périodiques

Le dernier paiement a été reçu le 2023-06-19

Avis : Si le paiement en totalité n'a pas été reçu au plus tard à la date indiquée, une taxe supplémentaire peut être imposée, soit une des taxes suivantes :

  • taxe de rétablissement ;
  • taxe pour paiement en souffrance ; ou
  • taxe additionnelle pour le renversement d'une péremption réputée.

Les taxes sur les brevets sont ajustées au 1er janvier de chaque année. Les montants ci-dessus sont les montants actuels s'ils sont reçus au plus tard le 31 décembre de l'année en cours.
Veuillez vous référer à la page web des taxes sur les brevets de l'OPIC pour voir tous les montants actuels des taxes.

Historique des taxes

Type de taxes Anniversaire Échéance Date payée
Requête d'examen - générale 2024-06-20 2020-12-15
Taxe nationale de base - générale 2020-12-15 2020-12-15
TM (demande, 2e anniv.) - générale 02 2021-06-21 2021-05-04
TM (demande, 3e anniv.) - générale 03 2022-06-20 2022-05-18
Taxe finale - générale 2023-05-29
TM (demande, 4e anniv.) - générale 04 2023-06-20 2023-06-19
TM (brevet, 5e anniv.) - générale 2024-06-20 2024-05-09
Titulaires au dossier

Les titulaires actuels et antérieures au dossier sont affichés en ordre alphabétique.

Titulaires actuels au dossier
ERIEZ MANUFACTURING CO.
Titulaires antérieures au dossier
JAMES JUKKOLA
PAUL SMITH
Les propriétaires antérieurs qui ne figurent pas dans la liste des « Propriétaires au dossier » apparaîtront dans d'autres documents au dossier.
Documents

Pour visionner les fichiers sélectionnés, entrer le code reCAPTCHA :



Pour visualiser une image, cliquer sur un lien dans la colonne description du document (Temporairement non-disponible). Pour télécharger l'image (les images), cliquer l'une ou plusieurs cases à cocher dans la première colonne et ensuite cliquer sur le bouton "Télécharger sélection en format PDF (archive Zip)" ou le bouton "Télécharger sélection (en un fichier PDF fusionné)".

Liste des documents de brevet publiés et non publiés sur la BDBC .

Si vous avez des difficultés à accéder au contenu, veuillez communiquer avec le Centre de services à la clientèle au 1-866-997-1936, ou envoyer un courriel au Centre de service à la clientèle de l'OPIC.


Description du
Document 
Date
(yyyy-mm-dd) 
Nombre de pages   Taille de l'image (Ko) 
Dessin représentatif 2023-07-10 1 9
Page couverture 2023-07-10 1 39
Abrégé 2020-12-14 1 57
Revendications 2020-12-14 1 28
Description 2020-12-14 7 247
Dessin représentatif 2020-12-14 1 8
Dessins 2020-12-14 4 71
Page couverture 2021-01-21 1 38
Revendications 2022-03-08 2 39
Paiement de taxe périodique 2024-05-08 1 26
Courtoisie - Réception de la requête d'examen 2021-01-07 1 433
Courtoisie - Lettre confirmant l'entrée en phase nationale en vertu du PCT 2021-01-13 1 590
Avis du commissaire - Demande jugée acceptable 2023-05-01 1 579
Taxe finale 2023-05-28 4 91
Paiement de taxe périodique 2023-06-18 1 27
Certificat électronique d'octroi 2023-07-31 1 2 527
Rapport de recherche internationale 2020-12-14 1 52
Demande d'entrée en phase nationale 2020-12-14 7 170
Déclaration 2020-12-14 2 90
Traité de coopération en matière de brevets (PCT) 2020-12-14 1 64
Demande de l'examinateur 2021-11-30 4 209
Modification / réponse à un rapport 2022-03-08 9 236
Paiement de taxe périodique 2022-05-17 1 27
Courtoisie - Lettre du bureau 2022-06-14 1 190
Demande de l'examinateur 2022-09-07 4 197
Modification / réponse à un rapport 2022-11-29 5 149