Sélection de la langue

Search

Sommaire du brevet 2015973 

Énoncé de désistement de responsabilité concernant l'information provenant de tiers

Une partie des informations de ce site Web a été fournie par des sources externes. Le gouvernement du Canada n'assume aucune responsabilité concernant la précision, l'actualité ou la fiabilité des informations fournies par les sources externes. Les utilisateurs qui désirent employer cette information devraient consulter directement la source des informations. Le contenu fourni par les sources externes n'est pas assujetti aux exigences sur les langues officielles, la protection des renseignements personnels et l'accessibilité.

Disponibilité de l'Abrégé et des Revendications

L'apparition de différences dans le texte et l'image des Revendications et de l'Abrégé dépend du moment auquel le document est publié. Les textes des Revendications et de l'Abrégé sont affichés :

  • lorsque la demande peut être examinée par le public;
  • lorsque le brevet est émis (délivrance).
(12) Brevet: (11) CA 2015973
(54) Titre français: DETECTION PARALLELE DE MOTS DE SYNCHRONISATION
(54) Titre anglais: PARALLEL SYNC DETECTION
Statut: Périmé et au-delà du délai pour l’annulation
Données bibliographiques
(51) Classification internationale des brevets (CIB):
  • H4L 7/00 (2006.01)
(72) Inventeurs :
  • CANNON, WAYNE HARRY (Canada)
  • NEWBY, PAUL SCOTT (Canada)
(73) Titulaires :
  • THE CENTRE FOR RESEARCH IN EARTH AND SPACE TECHNOLOGY
(71) Demandeurs :
  • THE CENTRE FOR RESEARCH IN EARTH AND SPACE TECHNOLOGY (Canada)
(74) Agent: MARKS & CLERK
(74) Co-agent:
(45) Délivré: 1998-06-23
(22) Date de dépôt: 1990-05-02
(41) Mise à la disponibilité du public: 1991-11-02
Requête d'examen: 1994-11-18
Licence disponible: S.O.
Cédé au domaine public: S.O.
(25) Langue des documents déposés: Anglais

Traité de coopération en matière de brevets (PCT): Non

(30) Données de priorité de la demande: S.O.

Abrégés

Abrégé français

Circuit de détection de synchronisation parallèle comprenant un convertisseur série-parallèle destiné à convertir un signal série d'entrée en un signal parallèle correspondant, un détecteur de phase servant à détecter la phase possible d'un marqueur dans un signal parallèle et à produire un signal de phase sensible à cet égard, un générateur de marqueur pour recevoir le signal de phase et, en réponse, produire une version stockée déphasée du marqueur, ainsi qu'un corrélateur permettant de comparer le signal parallèle à la version stockée inversée du marqueur et, dans le cas d'une identité substantielle, produire un signal de sortie indiquant la détection d'un marqueur.


Abrégé anglais


A parallel sync detection circuit comprising a
serial-to-parallel converter for converting an input
serial signal into a corresponding parallel signal, a
phase detector for detecting possible phase of a sync
word in the parallel signal and generating a phase
signal responsive thereto, a sync word generator for
receiving the phase signal and in response generating a
phase shifted stored version of the sync word, and a
correlator for comparing the parallel signal to the
phase shifted stored version of the sync word and in the
event of substantial identity therebetween generating an
output signal for indicating detection of the sync
word.

Revendications

Note : Les revendications sont présentées dans la langue officielle dans laquelle elles ont été soumises.


THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. A circuit for detecting a digital sync word of M
bits in a serial signal, comprising:
a) means for receiving and converting said serial
signal into a parallel signal having N bits;
where M=KN, and K is an integer;
b) means for storing K+1 successive N-bit
sequences of said parallel signal;
c) means for detecting phase location of said
digital sync word in said K+1 successive N-bit
sequences, and generating a digital phase
signal responsive thereto;
d) means for receiving said digital phase signal
and in response generating a phase shifted
correct version of said digital sync word; and
e) means for receiving and comparing KN of said
K+1 successive N-bit sequences in parallel to
said phase shifted correct version of said
digital sync word, and in the event said N-bit
sequences of said parallel signal correlate
with said correct version of said digital sync
word then generating an output signal
indicative of detection of said sync word in
said serial signal.
2. The circuit of claim 1, wherein said means for
receiving and converting said serial signal into said
parallel signal comprises a 1:N-bit serial-to-parallel
converter.
3. The circuit of claim 2, wherein said means for
storing comprises K+1 N-bit registers, a first one of
said registers having input terminals thereof connected
to said serial-to-parallel converter and output

terminals thereof connected to the input terminals of a
second one of said registers, and successive ones of
said K+1 registers being connected in series.
4. The circuit of claim 2 or 3, wherein said means for
detecting comprises a phase detector for receiving a
predetermined number of bits of said parallel signal and
in response generating said digital phase signal,
wherein said predetermined number of bits is J, and said
phase signal comprises P-bits, where 2P=N and the
minimum value of J for detecting said phase location is
given by J(min)=P+2T, where T represents a predetermined
number of bits permitted to be in error within the
received sync word.
5. The circuit of claim 4, wherein said means for
receiving said digital phase signal and in response
generating said phase shifted correct version of said
digital sync word comprises a look-up table.
6. The circuit of claim 5, wherein said look-up table
is incorporated within a PROM.
7. The circuit of claim 5 or 6, wherein said means
for receiving and comparing comprises a correlator
having K+1 pairs of N-bit inputs for receiving and
comparing said K+1 successive N-bit sequences to
respective N-bit sequences of said phase shifted correct
version of said digital sync word, and in the event of
fewer than M-T differences therebetween generating said
output signal.
8. The circuit of claim 7, wherein said correlator
further includes means for masking N bits of said
parallel signal and said phase shifted correct version

11
of said digital sync word which are not within the
boundaries of the said sync word.
9. A parallel sync detection circuit comprising means
for converting an input serial signal into a parallel
signal, means for detecting possible phase of a sync
word in said parallel signal and generating a phase
signal responsive thereto, means for receiving said
phase signal and in response generating a stored version
of said sync word phase shifted in accordance with said
phase signal, and a correlator for comparing said
parallel signal to said phase shifted stored version of
said sync word and in the event of substantial identity
therebetween generating an output signal for indicating
detection of said sync word.

Description

Note : Les descriptions sont présentées dans la langue officielle dans laquelle elles ont été soumises.


2~ 73
PARALLEL SYNC DETECTION
Field of the Invention
This invention relates in general to digital signal
receivers, and more particularly to a parallel sync
detector for detecting sync words in a serial data
signal.
Backqround of the Invention
Format synchronization in serial data links is
generally obtained through the periodic insertion of
sync words in the data format. Recognition of the sync
word at the output of the data receiver is required in
order to obtain bit level synchronization for
synchronous decoding of the data.
Brief Description of the Drawings
A brief description of prior art sync detectors
will be provided herein below along with a description
of the preferred embodiment of the present invention,
with reference to the following drawings, in which:
Figure 1 is a schematic block diagram of a
conventional sync detector in accordance with the prior
art;
Figure 2 is a block schematic diagram of a parallel
sync detector in accordance with the preferred
embodiment of the present invention; and
Figure 3 is a block schematic diagram of an
alternative design of correlator for use in the sync
detector of the present invention.
Discussion of the Prior Art
Turning to Figure 1, a conventional sync detector
is shown for detecting an M-bit sync word within a
serial input signal.
A serial data signal is clocked into an M-bit shift
register 1 under control of a serial clock signal
synchronized to the data signal. Successive bits
appearing on the ou~uLs of shift register l are
compared within a correlator 2 to corresponding bits

2 ~ 7 3
(Sl, S2...SM) of the M-bit sync word stored within
template register 3.
The correlator 2 performs a multiplication of
respective pairs of signals output from the shift
register 1 and sync word template 3 via multipliers X1,
X2...Xm. Respective outputs of the multipliers X1,
X2...Xm are applied to the inputs of a summer 4. The
ou~u~ of summer 4 is applied to one input of a
comparator 5, and a second input of a comparator
receives a threshold signal having a value of M-T, where
T designates a threshold number of acceptable errors in
the received sync word.
In operation, comparator 5 generates a one bit
output signal having a logic high value when the output
value from summer 4 exceeds M-T, and a logic low value
otherwise. In other words, if the number of agreements
between the stored input data signal within shift
register 1 and the sync word generated from template 3
P~cee~e the aforementioned threshold M-T, the sync word
is considered to have been detected.
The correlator 2 may be implemented in either
analog or digital form (e.g. multipliers Xl, X2...Xm,
summer 4, and comparator 5 may be either analog or
digital circuits). However, the o~u~ of comparator 5
should be a binary value.
The primary limitation of the above discussed prior
art sync detector is that the input data signal is
processe~ serially, which for high data rates results in
a requirement for high speed, high power and complexity
of circuitry.
Summary of the Invention
In accordance with the present invention, a sync
detector is provided which operates on an input signal
at a fraction of the data rate of the input signal
itself, resulting in low power and complexity of
implementation.

2 ~ 7 ~
In accordance with an aspect of the present
invention, there is provided a parallel sync detection
circuit comprising means for converting an input serial
signal into a parallel signal, means for detecting
possible phase of a sync word in said parallel signal
and generating a phase signal responsive thereto, means
for receiving said phase signal and in response
generating a stored version of said sync word phase
shifted in accordance with said phase signal, and a
correlator for comparing said parallel signal to said
phase shifted stored version of said sync word and in
the event of substantial identity therebetween
generating an output signal for indicating detection of
said sync word.
In accordance with another aspect of the present
invention, there is provided a circuit for detecting a
digital sync word of M bits in a serial signal,
comprising:
a) means for receiving and converting said serial
~ignal into a parallel signal having N bits;
where M=KN, and K i8 an integer:
b) means for storing K+1 successive N-bit
sequences of said parallel signal;
c) means for detecting phase location of said
digital sync word in said K+l successive
N-bit sequences, and generating a digital
phase signal responsive thereto;
d) means for receiving said digital phase signal
and in response generating a phase shifted
correct version of said digital sync word, and
e) means for receiving and comparing KN of said
K+l successive N-bit sequences in parallel to
said phase shifted correct version of said
. digital sync word, and in the event said N-bit
sequences of said parallel signal correlate
with said correct version of said digital sync

2 ~ 7 3
word then generating an output signal
indicative of detection of said sync word in
said serial signal.
Detailed Descri~tion of the Preferred Embodiment
Turning to Figure 2, a parallel sync detector is
shown in accordance with the preferred embodiment
comprising a serial-to-parallel converter 10 having a
clock input connected to a clock divider 12.
In operation, the input serial clock signal is
divided by N in divider 12 for clocking out respective
N-bit parallel segments of the digital serial input
signal from converter 10.
The number of bits N in the parallel signal is
chosen such that M=KN, where M is the number of bits in
the sync word to be detected, and X is an integer.
Successive N-bit segments of the parallel signal
are loaded into respective N-bit registers Rl,
R2...RK+1. As shown in Figure 2, the inputs of
register Rl are connected to the serial-to-parallel
converter 10 for receiving s~tccessive N-bit parallel
signal segments of the digital serial input signal. The
N-bit ~u~u~s of register Rl are connected to
corresponding inputs of register R2, and the outputs of
register R2 are connected to corresponding inputs of a
subsequent register (e.g. R3), etc. Respective N-bit
segments are loaded into the registers Rl, R2...RK+l
under control of the divided clock signal ou~u~ from
divider 12.
In accordance with the present invention, for an
M-bit sync word, a predeter ine~ ;n; number of bits
~J(min)) are required to identify the phase of the sync
word at the receiver. In this regard, a phase detector
14 is connected to predetermined outputs of various one
or more of the registers Rl, R2...RK+1 for receiving J
bits of the (K+l)N-bit parallel signal segment.
Although the J bits are depicted in Figure 1 as being

20~ 73
received from register R1, the J bits can, in fact, be
selected from any one or plurality of individual outputs
of the registerS R1, R2---RK+l-
Upon deciding on the bits J and which of the
register ou~uLs these bits are to be obtained from, aconstraint is placed on the sync word such that there
are N unique sequences of J bits for identifying the
phase. Thus, for a J-bit "snap shot" of the (K+l)N-bit
segment of incoming signal, a minimum of J(min) bits are
required to positively identify the phase of the sync
word within the input signal. Of course, in normal
usage, various J-bit patterns appear in the serial data
signal which do not form part of the sync word. Thus,
phase detector 14 functions as a necessary but not
sufficient means for detecting the presence of a sync
word, while the correlator 16 performs the ultimate
determination.
The minimum number of bits required to identify the
phase of the sync word within K+l N-bit consecutive
segments of input data may be represented by P, where
2P=N and J(min) > = P (assuming T=O, where T is the
number of errors allowed in the received sync word).
In general, the minimum number of bits required to
identify the phase of a sync word in the presence of up
to T errors is J(min) = P+2T. This follows from the
principles of digital information theory which dictate
that the actual minimum number of bits J(min) is
determined by the requirement that there must be N
consecutive segments of J bits in the sync word, each
segment having a Hamming distance of P+2T from each
other segment.
For example, if a 16 bit sync word is used (M=16),
and if N=8 (byte wide detection), then a minimum number
of 3 bits (e.g. J(min) = 3) are required to determine
the location of the sync word in (K+1) = 3 consecutive
bytes of data. If one error is to be allowed in the

2 ~
detection of the sync word (e.g T=1), then at least
J(min)=P+2T=3+2xl=5 bits are re~uired to identify the
phase of the sync word.
Phase detector 14 can be in the form of a look-up
table for comparing the input J bits with a
predetermined template, or can be in the form of a
digital mapping (e.g. programmable logic array) for
generating the P-bit phase signal upon receipt of the
appropriate bit pattern within the input signal.
The P-bit designation of sync word phase is output
from phase detector 14 and applied to a sync word
generator 18 which, according to the preferred
embodiment, is implemented as a PROM. In response, sync
word generator 18 generates a (K+l)N-bit digital signal
in ~hich the phase location of the M bit sync word is
determined by the value of P.
Respective N-bit se~ -nts of the phase shifted sync
word are compared to successive N-bit segments of the
parallel input signals ou~p~L from registers R1,
R2...RK+l. The P-bit phase signal output from detector
14 is also applied to correlator 16 such that correlator
effectively masks the bits surrolln~ing the phase shifted
sync word o~u~ from generator 18, as well as the
corresponding data bits o~ from registers R1 and
RK+l-
In all other respects, the correlator 16 operates
in an identical manner to the correlator 2 discussed
above with reference to the prior art detector of Figure
1.
Thus, in operation, correlator 16 receives a
threshold input signal (M-T) and generates a logic high
correlator o~uL signal in the event that the received
parallel converted input signal from registers R1,
R2...RK+l is substantially identical to the stored sync
word output from generator 18 (exception being made for
up to T errors).

2 ~ 7 ~
In addition to the one bit output signal from
correlator 16, the parallel sync detector of the
present invention also provides an indication of the P-
bit phase signal.
Thus, as discussed above, the circuit of the
present invention generates an accurate detection of
sync words at a fraction 1/N of the input serial data
rate. Accordingly, substantial savings are effected in
complexity, cost and power implementation requirements
over prior art serial sync detectors.
Figure 3 illustrates an alternative means of
correlating the (K+l)N bits from the register ouL~u~s
(here labelled X(1), X(2),...X((K+l)N)) as determined by
the P bits of phase detector 14 (Figure 2).
More particularly, logical circuit elements or
blocks 20, 22...24 are provided for effecting respective
arbitrary mappings of P+1 bits to 1 bit. The mappings
are represented by fl(xl~o)~ f2(X2~ 0O)---f(K+l)N
(X(K+1)N,0O). The logical circuit blocks 20, 22...24
may be implemented by programmable logic devices such as
PLA's, etc.
In operation, the P bits of phase detector o~u~
identify X(i) as one of KN possible sync bits or one or
N maskable data bits. If X(i) is a possible sync bit
and is the same value as the sync bit identified, the
ouL~uL of the logical block (e.g. block 20, 22...24) is
C(i) = 1. Otherwise, C(i) = 0 if X(i) is a possible
sync bit and is not the same value as the sync bit
identified, or X(i) is a -sk~hle data bit.
The (K+l)N ou~uLs of logical blocks 20, 22..... 24
are summed via summer 26 for comparison against the
correlator threshold in comparator 28, as occurs in the
above-discussed prior art.
~he alternative embodiment of Figure 3 is
functionally the same as the preferred embodiment
illustrated in Figure 2, but does not include the

2 ~ 7 ~
explicit formation of sync and mask bits for input to a
conventional correlator.
Variations and modifications of the present
invention are possible within the sphere and scope of
the invention as defined by the claims appended hereto.

Dessin représentatif
Une figure unique qui représente un dessin illustrant l'invention.
États administratifs

2024-08-01 : Dans le cadre de la transition vers les Brevets de nouvelle génération (BNG), la base de données sur les brevets canadiens (BDBC) contient désormais un Historique d'événement plus détaillé, qui reproduit le Journal des événements de notre nouvelle solution interne.

Veuillez noter que les événements débutant par « Inactive : » se réfèrent à des événements qui ne sont plus utilisés dans notre nouvelle solution interne.

Pour une meilleure compréhension de l'état de la demande ou brevet qui figure sur cette page, la rubrique Mise en garde , et les descriptions de Brevet , Historique d'événement , Taxes périodiques et Historique des paiements devraient être consultées.

Historique d'événement

Description Date
Le délai pour l'annulation est expiré 2005-05-02
Lettre envoyée 2004-05-03
Inactive : Grandeur de l'entité changée 2003-04-29
Inactive : Grandeur de l'entité changée 2002-03-06
Accordé par délivrance 1998-06-23
Inactive : Transferts multiples 1998-05-21
Préoctroi 1998-01-28
Inactive : Taxe finale reçue 1998-01-28
Un avis d'acceptation est envoyé 1997-11-28
Un avis d'acceptation est envoyé 1997-11-28
month 1997-11-28
Lettre envoyée 1997-11-28
Inactive : Renseign. sur l'état - Complets dès date d'ent. journ. 1997-11-24
Inactive : Dem. traitée sur TS dès date d'ent. journal 1997-11-24
Inactive : Approuvée aux fins d'acceptation (AFA) 1997-11-12
Inactive : CIB enlevée 1997-11-12
Inactive : CIB en 1re position 1997-11-12
Inactive : CIB attribuée 1997-11-12
Exigences pour une requête d'examen - jugée conforme 1994-11-18
Toutes les exigences pour l'examen - jugée conforme 1994-11-18
Demande publiée (accessible au public) 1991-11-02

Historique d'abandonnement

Il n'y a pas d'historique d'abandonnement

Taxes périodiques

Le dernier paiement a été reçu le 1998-04-28

Avis : Si le paiement en totalité n'a pas été reçu au plus tard à la date indiquée, une taxe supplémentaire peut être imposée, soit une des taxes suivantes :

  • taxe de rétablissement ;
  • taxe pour paiement en souffrance ; ou
  • taxe additionnelle pour le renversement d'une péremption réputée.

Les taxes sur les brevets sont ajustées au 1er janvier de chaque année. Les montants ci-dessus sont les montants actuels s'ils sont reçus au plus tard le 31 décembre de l'année en cours.
Veuillez vous référer à la page web des taxes sur les brevets de l'OPIC pour voir tous les montants actuels des taxes.

Historique des taxes

Type de taxes Anniversaire Échéance Date payée
Taxe finale - générale 1998-01-28
TM (demande, 8e anniv.) - générale 08 1998-05-04 1998-04-28
Enregistrement d'un document 1998-05-21
TM (brevet, 9e anniv.) - générale 1999-05-03 1999-04-20
TM (brevet, 10e anniv.) - générale 2000-05-02 2000-04-25
TM (brevet, 11e anniv.) - générale 2001-05-02 2001-04-09
TM (brevet, 12e anniv.) - petite 2002-05-02 2002-02-21
TM (brevet, 13e anniv.) - générale 2003-05-02 2003-04-09
Titulaires au dossier

Les titulaires actuels et antérieures au dossier sont affichés en ordre alphabétique.

Titulaires actuels au dossier
THE CENTRE FOR RESEARCH IN EARTH AND SPACE TECHNOLOGY
Titulaires antérieures au dossier
PAUL SCOTT NEWBY
WAYNE HARRY CANNON
Les propriétaires antérieurs qui ne figurent pas dans la liste des « Propriétaires au dossier » apparaîtront dans d'autres documents au dossier.
Documents

Pour visionner les fichiers sélectionnés, entrer le code reCAPTCHA :



Pour visualiser une image, cliquer sur un lien dans la colonne description du document (Temporairement non-disponible). Pour télécharger l'image (les images), cliquer l'une ou plusieurs cases à cocher dans la première colonne et ensuite cliquer sur le bouton "Télécharger sélection en format PDF (archive Zip)" ou le bouton "Télécharger sélection (en un fichier PDF fusionné)".

Liste des documents de brevet publiés et non publiés sur la BDBC .

Si vous avez des difficultés à accéder au contenu, veuillez communiquer avec le Centre de services à la clientèle au 1-866-997-1936, ou envoyer un courriel au Centre de service à la clientèle de l'OPIC.


Description du
Document 
Date
(yyyy-mm-dd) 
Nombre de pages   Taille de l'image (Ko) 
Page couverture 1994-04-08 1 12
Abrégé 1994-04-08 1 16
Revendications 1994-04-08 3 85
Dessins 1994-04-08 3 36
Description 1994-04-08 8 275
Revendications 1997-10-21 3 101
Revendications 1998-05-21 3 101
Page couverture 1998-06-18 1 44
Dessin représentatif 1998-06-18 1 7
Avis du commissaire - Demande jugée acceptable 1997-11-27 1 165
Avis concernant la taxe de maintien 2004-06-27 1 172
Avis concernant la taxe de maintien 2004-06-27 1 172
Taxes 2003-04-13 1 47
Correspondance 1998-01-27 1 53
Taxes 1998-04-27 1 51
Taxes 2002-02-20 1 50
Taxes 2001-04-08 1 50
Taxes 1999-04-19 1 50
Taxes 2000-04-24 1 49
Taxes 1997-03-09 1 53
Taxes 1996-01-29 1 41
Taxes 1995-02-09 1 45
Taxes 1994-10-11 1 45
Taxes 1992-02-23 1 29
Taxes 1993-04-29 1 28
Courtoisie - Lettre du bureau 1994-10-31 1 19
Correspondance de la poursuite 1994-11-17 1 37
Correspondance de la poursuite 1995-03-19 2 42