Sélection de la langue

Search

Sommaire du brevet 2100820 

Énoncé de désistement de responsabilité concernant l'information provenant de tiers

Une partie des informations de ce site Web a été fournie par des sources externes. Le gouvernement du Canada n'assume aucune responsabilité concernant la précision, l'actualité ou la fiabilité des informations fournies par les sources externes. Les utilisateurs qui désirent employer cette information devraient consulter directement la source des informations. Le contenu fourni par les sources externes n'est pas assujetti aux exigences sur les langues officielles, la protection des renseignements personnels et l'accessibilité.

Disponibilité de l'Abrégé et des Revendications

L'apparition de différences dans le texte et l'image des Revendications et de l'Abrégé dépend du moment auquel le document est publié. Les textes des Revendications et de l'Abrégé sont affichés :

  • lorsque la demande peut être examinée par le public;
  • lorsque le brevet est émis (délivrance).
(12) Brevet: (11) CA 2100820
(54) Titre français: AMINO-CYCLODEXTRINE ET STRUCTURES APPARENTEES
(54) Titre anglais: AMINO-CYCLODEXTRIN AND RELATED STRUCTURES
Statut: Durée expirée - au-delà du délai suivant l'octroi
Données bibliographiques
Abrégés

Abrégé anglais


There are disclosed novel azidodeoxy cyclodextrins, which have
similar or improved properties to known cyclodextrins. The novel
compounds are substituted cyclodextrins having substituents such as
alkyl or alkenyl. There is also disclosed a process for preparing
such compounds by reacting cyclodextrin with a phosphine derivative
and carbon tetrabromide.

Revendications

Note : Les revendications sont présentées dans la langue officielle dans laquelle elles ont été soumises.


THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. a compound of formula
<IMG>
wherein C is cyclodextrin, A is azido and n is 0, 1, 2 or 3,
R is alkyl of 1 to 6 carbon atoms, alkenyl of 2 to 6 carbon
atoms, or azidoalkyl of 1 to 6 carbon atoms, with the proviso
when R is azidoalkyl, n is 0.
2. A compound of claim 1, wherein n is l, 2 or 3, R is
alkyl of 1 to 6 carbon atoms, or alkenyl of 2 to 6 carbon
atoms.
3. A compound of claim 2 selected from the group
consisting of 6,6'-diazido-6,6'-dideoxy-alpha-cyclodextrin,
6,6',6"-triazido-6,6',6"-trideoxy-alpha-cyclodextrin, and
2-0-allyl-6-azido-6-deoxy-alpha-cyclodextrin, 2-0-allyl-6,6'-
diazido-6,6'-dideoxy-alpha-cyclodextrin and 2-0-allyl-
6,6',6"-triazido-6,6',6"-trideoxy-alpha-cyclodextrin.
4. A compound of claim 3, selected from the group
consisting of the 1,3- and 1,4- isomers of 6,6'-diazido-6,6'-
dideoxy-alpha-cyclodextrin, and the 1,3,5,-,1,2,4- and
1,2,5- isomers of 6,6',6"-triazido-6,6',6"-trideoxy-alpha-
cyclodextrin.
5. A compound of claim 1, wherein n is 0 and R is
azidoalkyl.
6. A compound of claim 1, selected from the group
consisting of 2-0-azidopropyl-beta-cyclodextrin,
2-0-azidobutyl-beta-cyclodextrin, 2-0-azidopentyl-beta-

cyclodextrin, 3-0-azidopropyl-beta-cyclodextrin,
3-0-azidobutyl-beta-cyclodextrin, and 3-0-azidopentyl-beta-
cyclodextrin.
7. A process of preparation of a compound of formula
<IMG>
wherein C is cyclodextrin, A is azido nad n is 0, 1, 2 or 3,
R is alkyl of 1 to 6 carbon atoms, alkenyl of 2 to 6 carbon
atoms, or azidoalkyl or 1 to 6 carbon atoms, with the proviso
when R is azidoalkyl, n is 0, comprising
when n is 1, 2, or 3 reacting a cyclodextrin of formula
<IMG>
wherein C is cyclodextrin, R is hydrogen, alkyl of 1 to 6
carbon atoms, or alkenyl of 2 to 6 carbon atoms, with alkali
metal azide triphenyl phosphine, and carbon tetrabromide,
when n is 0 reacting cyclodextrin with alkali metal
hydride in a first step, and the product thereof with
haloazidoalkane in a second step.
8. A process of claim 7 wherein n is 1, 2 or 3.
9. A process of claim 8 wherein R is hydrogen, C is

alpha-cyclodextrin and the alkali metal azide is lithium
azide.
10. A process of claim 8 wherein R is allyl, C is
alpha-cyclodextrin and the alkali metal azide is lithium
azide.
11. A process of claim 7 wherein n is 0.
12. A process of claim 11 wherein R in the formula
II is hydrogen, C is beta-cyclodextrin, the alkali metal
hydride is lithium hydride and the haloazidoalkane is
iodoazidoalkane.
13. A process of claim 12 wherein the iodoazidoalkane
is 1-iodo-3-azidopropane.
14. A process of claim 12 wherein the iodoazidoalkane
is 1-iodo-4-azidobutane.
15. A process of claim 12 wherein the iodoazidoalkane
is 1-iodo-5-azidopentane.

Description

Note : Les descriptions sont présentées dans la langue officielle dans laquelle elles ont été soumises.


i~2100~2p
AZ IDO-CYCI~ODEXTRIN
This invention relates to methods of synthesis of
aminocyclodextrins: Cyclodextrins are widely known as food
and drug additives, as catalysts in chemical and industrial
processes, and in numerous spectroscopic, analytical and
preparative procedures, (see Li and Purdy, Chem..Rev. 1992,
92, 1457-1470. Their inclusion compounds are similarly
widely known) see Saenger, Angew. Chem. Int. Ed. Engl.
1980, 19, 433-362.
The present invention primarily relates to processes
of preparing substituted cyclodextrins. Specific reagents
are utilized to produce specific products. The present
invention secondarily provides novel compounds prepared by
the process. Although the invention will be described and
referred to as it relates to processes of preparation of
aminocyclodextrins and novel aminocyclodextrins prepared
2o thereby, it will be understood that the principles of this
invention are equally applicable to similar processes and
products, . and accordingly it will be understood that the
invention is not limited to such processes and products.
BACKGROUND OF THE INVENTION
Cyclodextrins are cyclic alpha-1,4-oligosaccharide
starch derivates) Alpha, beta, gamma, and delta
cyclodextrins are known, containing six, seven, eight, and
nine.glucose units.respectively. Their importance lies in
3o their enzymic properties attributed to their hollow
truncated cone structure having primary 6-hydroxyls at the
narrower end, and secondary 2- and 3-hydroxyls at the wider
end, a relatively hydrophobic interior cavity and a
relatively hydrophilic exterior.
The cyclodextrins form inclusion complexes and its is
believed that these inclusion complexes and similar
compounds modify the chemical and physical environment
1
is

i~2100820
affecting chemical reactions to induce chirality in
otherwise achiral reactions. The cyclodextrins are
themselves inherently chiral being composed of chiral D-
glucose units.
Substituted aminodeoxy cyclodextrins are particularly
noted for their chiral catalytic effects (Tagaki et al.,
Tetrahedron Lett., 1990, 31, 3897-3900, Parrot-Lopez et
al., Tetrahedron: Asymmetry, 1990, 1,.367-370, Angew. Chem.
Int. Ed. Engl., 1992, 31, 1381-1383.
Azidodeoxy cyclodextrins are suitable precursors for
aminodeoxy cyclodextrins.
It is a principal object of the invention to prepare
azidodeoxy cyclodextrins.
In accordance with one aspect of one embodiment of the
present invention there is provided a compound of formula
.FOA'~"~A
P~
'C
ofd
wherein C is cyclodextrin, A is azido and n is 0, 1, 2 or
3,R is alkyl of 1 to 6 carbon atoms, alkenyl of
2 to 6 carbon atoms, or azidoalkyl of 1 to 6 carbon atoms,
with the proviso when R is azidoalkyl, n is 0.
In another aspect of the present invention; there is
provided a process of preparation of a compound of formula
Faa nu~A ,I
~1'v ..
C '
r
2
T~:-:

2~0~82~
wherein C is cyclodextrin, A is azido and n is 0, 1, 2 or
3, R is hydrogen, alkyl of 1 to 6 carbon atoms, alkenyl of
2 to 6 carbon atoms, or azidoalkyl of 1 to 6 carbon atoms,
with the proviso when R is azidoalkyl, n is 0, comprising
when n is 1, 2, or 3 reacting a cyclodextrin of formula
FoR nu~.A
G
o~
wherein C is cyclodextrin, R is hydrogen, alkyl of 1 to 6
carbon atoms, or alkenyl of 2 to 6 carbon atoms, with
alkali metal azide triphenyl p~hosphine, and carbon
tetrabromide, when n is 0 reacting cyclodextrin with alkali
metal hydride in a first step, and the product thereof with
haloazidoalkane in a second step.
Having thus generally described the invention,
reference will now be made to the Examples.
EXPERIMENTAL DATA
Example 1
2-O-Allyl-alpha-cyclodextrin
To a solution of dried a-cyclodextrin (2.88 g, 2.96
mmol) in DMSO (30 ml) was added lithium hydride (35 mg; 1.5
eq). The mixture was stirred under Argon until the
solution became clear (24 hours). To this solution was
added allyl bromide (256 ~C1, 1 eq) and lithium iodide (10
mg). The mixture was allowed to stand at 55°C for 4 hours.
TLC on silica gel (CHjCN/HO2, 8/2) showed 3 products having
Rf values of 0.28, 0.20, 0.09, and corresponding
respectively to diallyl, monoallyl-a-cyclodextrins, and
starting material. a-cyclodextrin and its derivatives were
precipitated out by the addition of acetone (500 ml). The
3

210~~~0
precipitate was filtered and washed with acetone (100 ml)
to give 3 g of crude product which was purified by flash
chromatography on a silica gel column (4x40 cm) eluting y
with CH3CN/HZO, 9/1 (1 liter) then 8/2 (1.5 liters). The '
pure fractions of monoallyl-a-cyclodextrin were combined,
then concentrated in vacuo to give a solid (900 mg, 30%).
The proton NMR spectra showed that it was a mixture of 2,
and 6-O-allyl-a-cyclodextrins. The latter was present in
about 20% (based on the integration of the alkenyl
protons). Pure 2-O-monoallyl-a-cyclodextrin was obtained
after recrystallization from MeOH/HZO (720 mg, 24%).
ON
- Y O,~-~ ~~~w~-cy.J..tn~.
mp 270°C (dec). Cc
(aJp+55° (c 0.1, H20) . y
IR (KBr) 3400 (OH) .
~H NMR (DMSO-d6, 300 MHz) ~ :3.20 (dd, 1H, Jz_~ = 3.3, JZ_3 =
9.0, H2") 3.22-3.48 (m, 21II, H2, H4, HzO, 3.50-7.70 (m, 18H,
H5, H6) , 3.70-3.82 (m, 5H, H3) , 3.85 (td, 1H, J3_z = Jg_4
9.0, JH3-off - 2.2, I-I3") , 4.16 (dd, 1H, Jd_e = 12.8, Jd_~ = 5.7,
Hd)., 4.28 (dd, 1H, Je.d = 12.8, J~-~ = 5.7, He) , 4.38-4.52 (m,
6H, OH6) , 4.79 (s, 5H, H1) , 4.95 (d, 1H, J~_z = 3.3, H1A) ,
5. 18 (dd, 1~I, Ja_~ = 10.4, Ja_b = 1.8, Ha) , 5.29 (dd, 1H, Jb_~
- 17.3, Jb_a = 1.8, Hb), 5.40-5.70 (m, 11H, OH2, OH3), 5.80-
5.95 (m, 1H, J~_b = 17.3, J~_a = 10.4, J~_d = J~_e = 5.7, Hc) .
'3C NMR (DMSO-d6, 300 MHz) ~: 60.1(C6), 71.9, 72.2 (C2, C5),
72.4 (allyl) , 72.8 (C3") , 73.2, 73.3, 73.4 (C3) , 79.6 (C2") ,
82.2, 82.4 (C4), 82.8 (C4A), 82.8 (C4A), 100.2 (C1A), 101.2,
102.0, 102.1, (C1), 117.7 (allyl), 134.8 (allyl).
3 5 FABMS C39H6403o . 10 3 5 ( M+N a ) .
Example 2
(i) 6 Azido-6-deoxy-alpha-cyclodextrin and
(ii) 6 6' Diazido-6 6'-dideoxy-alpha-cvclodextrin_
4

2144824
~.
~3 ~3 ~3
(ii1
a ! a
To a solution of dried a-cyclodextrin (2.8 g, 2.88
mmol) in DMF (60 ml) were added lithium azide (1.40 g, 10
eq), triphenylphosphine (1.89 g, 2.5 eq) and carbon
tetrabromide (2.39 g, 2.5 eq). The addition of the.latter
caused a mildly exothermic reaction and the solution turned
yellow. The reaction was stirred under Argon at room
temperature for 6 hours. TLC on silica gel (CH3CN/HZO, 8/2)
showed 3 major products having Rf values of 0.35, 0.20,
0.09, and corresponding respectively to diazido, monoazido-
a-cyclodextrins and starting material. After addition of
methanol ~ ( 10 ml ) , the brown solution was concentrated to
about half by rotary evaporation under reduced pressure,
then poured into acetone (500 ml) to precipitate out a-
cyclodextrin and its derivatives. The precipitate was
filtered and washed with acetone (100 ml) to give 3 g of
crude products which were purified by flash chromatography
on a silca gel column (4x40 cm) eluting with CH3CN/HzO, 9/1
(2 liters) then 8/2 (1.5 liters). The pure fractions were
combined, then concentrated in vacuo to give 6-azido-6-
deoxy-a-cyclodextrin (570 mg, 20%), and 6,6'-diazido- .
6,6'dideoxy-a-cyclodextrin (760 mg, 26%).
6-Azido-6-deoxy-a-cyclodextrin y3
mp -190°C (dec) lit. 217°C (dec), Carbohydr. Res., 1971, 18,
29-37)
[a]p + 133 ° (c 0.2, H20) ; (lit. + 128° (c 0.4, H20) ,
Carbohydr. Res., 1971, 18, 29-37)
IR (KBr) 3400 (OH) , 2100 (N3) .
5

.. .
2100820
~H NMR (DMSO-d6, 300 MHz) . ~: 3.20-3.45 (m, 30H, H2,H4,
H20), 3.52-3.70 (m, 18H, H5, H6), 3.71-3.87 (m, 6H, H3),
4.40-4.60 (m, 5H, OH6), 4.72-4.82 (m, 5H, H1), '4.83 (d, 1H,
J~-2 =~3.2, H1A), 5.31-5.49 (m, 6H, OH3), 5.49-5.62 (m, 6H,
OH2).
~3C NMR (DMSO-d6), 300 MHz) ~: 51.3 (C6A), 60.0-60.3 (C6),
70.4 (C2A), 72.0, 72.2, 72.3, 72.4, 73.0 (C2,C5), 73.2
(C3A) , 73.3 (C3) , 82. l, 82. 2, 82.4 (C4) , 83'. 2 (C4A) , 101.7
(C1A), 102.0, 102.2, 102.3 (C1).
FARMS C36H5o029N3 ~ 1020 (M+Na) .
6.6'-Diazido-6,6'-dideoxy-a-cyclodextrin
i 5 Analytical reversed HPLC (~.c-Bondapack (T'1Vn C 18 Column, 3 .9x3 00
mm) showed, that it is a mixture of 2 isomers in relative
ratios of 75/25 as calculated from the peak areas on HPLC
chromatogram.
i'13 ~I3 ,
2 0 -!
1
4
a
y~ _ d~az;de
2 5 Analytical reversed phase HPLC of the mixture of the 2 isomers of diazido-
a-
. cyclodextrin. A stepwise gradient elution was applied : 10 % MeOH/H20 for
10 min. , then 50 % Me0HIH20 for 20 min. , column was washed with MeOH
between injections.
Retention times of the peaks 1 and ? are respectively : 19.S0 and 21.9-: min.
36 mg of this~mixture yielded by semi-preparative reversed
phase HPLC (Novapak (TM) C18 Column, 7.8x300 mm) 21 mg, 80% of
6
,~;
..:
r

2~~Q~~~
the major isomer and 6 mg, 70% of the minor one. '
The determination of the structure of the 2 isomers
was done by ~3C NMR and Korner's method. The major isomer -
is the AD isomer and the minor one is the AC isomer.
M~t70
~ ~'~°~''~
1 ~ 2 'J 3
a-cyclodextmn
i
~.r (Si ~ : !a,.I ~ ~' ~- -r
Isomer Determination of Di- and Triazido-a-cyclodextrin by
Korners method (J. Am. Chem. Soc. 1986, 108,4509).
The AD isomer
V~ y~
a
mp 165°C (dec).
[aJp+77 ° (c 0.11, H20) .
IR (KBr) 3400 (OH), 2100 (N3).
~H NMR (DMSO-d6, 300 MI-iz) ~ : 3.11-3.48 (m, 36H, H2, H4,
HzOI), 3.48-3.70 (m, 18H, H5, H6), 3.70-3.90 (m, 6H, H3),
4.42-4 .68 (m, 5H, OI-16) , 4.7G (d, 2H, J~_z = 3. 6, H1) , 4.78
(d, 2I-i, J~_z = 3 . 3 , H1) , 4 . 84 (d, 2H, J~_2 = 2 . , 4 H1A) , 5. 30-
5.72 (m, 12H, OH2, OH3).
~3C NMR (DMSO-d6, 300 MHz) ~ : 51.3 (C6A), 60.0, 60.3 (C6),
70.4 (C2A) , 72.0, (C2) , 72. 1 (C5) , 72.4 ~(C5A) , 73.0, (C3A) ,
73.2 (C3), 82.2, 82.4 (C4), 83.2 (C4A), 101.7 (C1A), 102.0,
102.2 (C1) .
FABMS C36H5aO2aN6 . 10 2 3 ( M+H )
Example 3
(i) 6-Azido-6-deoxy-alpha-cvclodextrin and
(ii) 6 6'-Diazido-6 6'-dideoxy-alpha-cyclodextrin and
7

~~oos~o
..
(iii) 6 6' 6" Triazido-6 6' 6"-trideoxy-alpha-cyclodextrin
To a solution of dried a-cyclodextrin (2.5 g, 2.61
mmol) in DMF (60 ml) were added lithium azide (1.28 g, 10
eq), triphenylphosphine (2.05 g, 3 eq) and carbon
tetrabromide (2.60 g, 3 eq). The addition of the latter
caused a mildly exothermic reaction and the solution turned
yellow. The reaction was stirred under Argon at room
temperature for 6 hours. TLC on silica gel (CH3CN/H20, 8/2)
showed 4 major products having Rf values of 0.50, 0.35;
0.20, 0.09, and corresponding respectively to triazido,
diazido, monoazido-a-cyclodextrin and starting material
After addition of methanol (10 ml), the brown solution was
concentrated to about half by rotary evaporation under
reduced pressure, then poured into acetone (500 ml) to
precipitate out a-cyclodextrin and its derivatives. The
precipitate was filtered and washed with acetone (100 ml)
to give 3 g of crude products which were purified by flash
chromatography on a silica gel column (4x40 cm) eluting
with CH3CN/HzO, 9/1 (2 liter) then 8/2 (1.5 liter) . The
pure fractions were combined, then concentrated in vacuo to
give:
6-Azido-6-deoxy-a-cyclodextrin (470 mg, 18%), 6,6'-diazido
6,6'-dideoxy-a-cyclodextrin (mixture of 2 isomers, 670 mg,
25%), and 6,6',6"-triazido-6,6',6"-tridexoy-a-cyclodextrin
(270 mg, 10%).
~3 ~3 ~1 ~z ~
3
l~~ lii~
tiii~
a a a
_6 6' 6" Triazido-6 6' 6"-trideoxy-a-cvclodextrin
Analytical reversed phase HPLC (~-Bondapak C18 Column,
3.9x300 mm) showed that it is a mixture of 3 isomers in
relative ratios of 70/20/10 as calculated from the peak
areas on HPLC chromatogram.
8

~~o~~
V. 5
~I : X13 4-( )
I
Analytical reversed phase 1-1PLC of the mixture of the 3 isomers of triazido-a
cvclodextrin. A stepwise gradient elution was applied : 10 ~Io ivIeOH/H.''.O
for
10 mina, then ~0 % VIe01-UH?0 for?0 min: , column was washed with MeOH
between injections.
Retention times of the peal, 7. -: (p), and ~ l-1) :u'o respectively :
2'_'.16, '_'=1.03,
and ?6.67 min.
100_mg of this mixture yields by semi preparative reversed
HPLC. (Novapak C18 Column, 7.8x300 mm) 16 mg, 80%, 50.mg,
70~, and 8 mg, 70% of pure isomers.
The determination of the structure of the 3 isomers
was done by ~3C NMR and Korner's method. The isomer 7 on
the HPLC chromatogram correspond to the ACE isomer, the
isomer 4(5) to the ABD or ABE isomer and the isomer 5(4) to
the ABE or ABD isomer.
2 0 ~ R~,d~:~.~.
2 3
~./ 'r 1
' a-cvclodex~=i,
w
' 5 ( l ~6 -=t
~(S) 4-
isomer Determination of Di- and Triazido-a-cyclodextrin by
Korner's method (J. Am. Chem. Soc. 1986, 108,4509).
Example 4
2-O-Allyl-6-azido-6-deoxy-alpha-cyclodextrin and
2 O Ally_1 6 6'- --diazido-6 6'-dideoxy-alpha-cyclodextrin
To a solution of dried 2-O-allyl-a-cyclodextrin (872
mg, 0.86 mmol) in DMF (30 ml) were added lithium azide (420
mg, 10 eq), triphenylphosphine (564 mg, 2.5 eq) and carbon
tetrabromide (715 mg, 2.5 eq). The addition of the latter
caused a mildly exothermic reaction and the solution turned
9

21~Q~~0 ( .
yellow. The reaction was stirred under Argon at room
temperature for 6 hours. TLC on silica gel (CH3CN/HZO, 8/2)
showed 3 major products having Rf values of 0.54, 0.40,
0.20, and corresponding respectively to diazido-monoallyl-
a-cyclodextrin, monoazido-monoallyl-a-cyclodextrin and
starting material. After addition of methanol (5 ml), the
brown solution was concentrated to about 3 ml by rotary
evaporation under reduced pressure, then applied on a
silica gel column (4x40 cm) eluting with CH3CN/HzO, 92/8
(11), 90/10 (1.51), then 85/15 (1.51). The pure fractions
were combined, then concentrated in vacuo to give: 2-O-
allyl-6-azido-6-deoxy-a-cyclodextrin (320 mg, 36%), and 2-
O-allyl-6,6'-diazido-6,6'-dideoxy-a-cyclodextrin (160 mg,
20%) .
2-O-ally~l-6-azido-6-deoxy-a-Cvclodextrin
N3
mp = 175°C (dec). a
[a]p+153° (c 0.1, H20) .
IR (KBr) 3400 (OH), 2100 (N3). O
~H ~NMR (DMSO-d6, 300 MHz) ~ : 3.15-3.49 (m, 20H, H2, H4,
Hz0), 3.49-3.70 (m, 18H, H5, H6), 3.70-3.87 (m, 5H, H3),
3.87-3.90 (m, 1H, H3") , 4. 16 (dd, 1H, Jd_e = 12.8, Jd_~ = 5.7,
Hd) , 4.28 (dd, 1H, J~_d = 12.8, Je_~ = 5.7, He) , 4.38-4.65 (m,
5H, OH6), 4.78, 4.84, 4.96, 5.02 (s, 6H, H1, H1"), 5.17 (d,
1H, Je_~ = 10.3, Ha), 5.29 (d, 1H, Jb_~ = 17.3, Hb), 5.37-5.78
(m, 11H, OH2, OH3), 5.78-5.96 (m; 1H, Hc).
~3C NMR (DMSO-d6, 300 MHz) ~: 51.3 (C6"), 60.1, 60.31, 60.33
(C6) , 70.4, 71.7, 71.9, 7.2.0, 72. 1, 72.3, 72.4 (C2, C5) ,
72.7 (allyl) , 73.0 (C3") , 73. 1, 73.2, 73.3 (C3) , 79.6 (C2A) ,
82.1, 82.2, 82.4, 82.5 (C4), 83.2 (C4a), 101.80 , 101.82
(C1"), 102.00, 102.07, 102.2 (C1), 117.8 (allyl), 134.8
(allyl).
FABMS C39H630z9N3 . 10 6 0 ( M+Na ) .

~~~Q~~O
2 O-allyl-6 6'-diazido-6 6'-dideoxy-a-Cvclodextrin
N~ N
mp = 172°C (dec).
[a]o+131° (c 0.1, HZO) .
IR (KBr) 3400 (OH), 2100 (N3).
~H NMR (DMSO-d6, 300 MHz) H4, HZO)
~ : 3.20-3.48 (m, H2, ,
3.48-3.69 (m, l8Fi, FiS, H6) , 3.69.3.88 H3) 3.88-
(m, 5H, ,
3.98 (m, 1H, H3A) ( 4. 16 (dd, 1H, = 12.8, = Hd)
Jd_e Jd_~ 5.7.,,
4.28 (dd, 1H, Je_d = 12.8, Je_~ = Fie) , 4.50-4.70
5.7, (m, 4H,
OH6), 4.77, 4.79, 4.83, 4.95, 5.00(s, 6H, H1A),5.18
H1,
(d, 1H, Je_~ = 10.3 Ha), 5.29 (d, Jb_~ _ 17.3,Hb), 5.37-
5.78 (m, llH, OH2, 1H, (m, 1H,
OH3), 5.78-5.96 Hc).
~3C NMR (DMSO-d6, 300 MHz) ~: 51.3 (C6A), 60.0, 60.4 (C6),
70.4; 71.8, 72.0, 72.1, 72.2, 72.3, 72.4 (C2, C5); 72.7
(allyl), 73.0 (C3A), 73.3, 73.5, 73.6 (C3), 79.4 (C2A),
82.3, 82.5, 83.2, 83.3 (C4), 101.8, 101.9 (C1A), 102.0,
102.2 (C1), 117.7 (allyl), 134.8, 134.9 (allyl).
FABMS C39HszOzsN6 : 1085 (M+Na)
. Example 5
2-O-All~l-6-azido-6-deoxy-alpha-cvclodextrin and
2-O-All~l-6 6'-diazido-6 6'-dideoxy-alpha-cyclodextrin and
2-O-A11y1-6 6' 6"-triazido-6 6' 6"-trideoxy-alpha-
cyclodextrin
To a solution of dried 2-O-allyl-a-cyclodextrin (740
mg, 0.73 mmol) in DMF (30 ml) were added lithium azide (358
mg, 10 eq), triphenylphosphine (574 mg, 3 eq) and carbon
tetrabromide (728 mg, 3 eq) . The addition of the latter
caused a mildly exothermic reaction and the solution turned
yellow. The reaction was stirred under Argon at room
temperature for 6 hours. TLC on silica gel (CH3CN/H20, 8/2)
showed 3 major products having Rf values of 0.68, 0.54,
11

~1~~8~4 -.
0.40, and corresponding respectively to triazido-monoallyl-
a-cyclodextrin, diazido-monoallyl-a-cyclodextrin and
monoazido-monoallyl-a-cyclodextrin. After addition of
methanol (5 ml), the brown solution was concentrated to
about 3 mol by rotary evaporation under reduced pressure,
then applied on a silica gel column (4x40 cm) eluting with
CH3CN/HZO, 92/8 (11), 90/10 (1.51), then 85/15 (1.51). The
pure fractions were combined, then concentrated in vacuo to
give: 2-O-allyl-6-azido-6-deoxy-a-cyclodextrin (200 mg,
26%), 2-O-allyl-6,6'-diazido-6,6'-dideoxy-a-cyclodextrin
(260 fig, 330) and 2-O-allyl-6,6',6"-triazido-6,6'-6"-
tridexoy-a-cyclodextrin (214 mg, 27%).
2 O a11L1-6 6' 6"-triazido-6 6' 6"-tridexoy-a-CVClodextrin:
1~3 1V 3
a
mp = 168°C (dec).
[a]p+110° (c 0.11, MeOH) .
IR (KBr) 3400 (OI-i) , 2100 (N3) .
~H NMR (DMSO-d6, 300 MHz) ~ : 3. 18-3.42 (m, H2, H4, Hz0) ,
3.45-3.64 (m, 18H, H5, H6), 3.64-3.82 (m, 5H, H3), 3.82-
3.95 (m, 1H, H3") , 4.12 (dd, 1H, Jd_e = 12.8, Jd_~ = 5.7, Hd) ,
4.25 (dd, 1H, Je_d = 12.8, Je_~ = 5.7, He),, 4.50-4.70 (m, 3H,
OH6), 4.72, 4.80, 4.90, 4.98 (s, 6H, H1, H1"),.5.11 (d, 1H,
Je_~ = 10.3, Ha) , 5. 25 (d, 1H, Jb_~ = 17. 3, Hb) , 5.35-5.70 (m,
11H, OH2, OH3) , 5.75-5.95 (m, 1H, IIc) .
~3C NMR (DMSO-d6, 300 MHz) ~: 51.2, 51.3 (C6°') , 60.3 (C6) ,
70.3, 71.7, 71.8, 72.0, 72.1, 72.3 (C2, C5), 72.7 (allyl),
73.0, 73.1, 73.2 (C3), 79.2, 79.3 (C2~), 82.6, 82.8, 83.1,
83.3 (C4), 101.6, 101.7, 101.8 (C1A), 102.00, 102.03, 102.1
(C1), 117.6, 117.7 (allyl), 134.7, 134.8 (allyl).
12

z~ o~g~o
FABMS C39H6~ 027N9 ~ 1110 ( M+Na )
Example 6
Alphahalo-omega-azidohaloalkane
1-Iodo-n-azidoalkanes
Preparation of chloroazidoalkanes:
To a solution of 1-bromo-n-chloroalkane (50 mmol) in
DMSO (50 ml) was added sodium azide (3.25 g, 1 eq) . The
solution was stirred at room temperature for 20 hours, then
diluted with water (100 ml), and extracted with ether
(2x100 ml). The organic layers were combined, then dried
over anhydrous sodium sulfate. The residue obtained after
removal of the solvent was used without further
purification.
1-Chloro-3-azidopropane
Yield 80%
~H NMR (CDC13, 300 MHz) . 2.00 (quint, 2H, J = 6.2), 3.48
(t, 2H, J = 6.4), 3.62 (t, 2H, J = 6.2).
1-Chloro-4-azidobutane
Yield 86%
~H NMR (CDC13, 300 MHz) . 1.60-2.00 (m, 4H), 3.31 (t, 2H,
J = 6.2), 3.54 (t, 2H, J = 6.2).
1-Chloro-5-azidopentane
Yield 90%
~H NMR (CDC13, 300 MHz) . 1.47-1.68 (m, 4H), 1.80 (quint,
2H, J = 7.3), 3.29 (t, 2H, J = 6.4), 3.54 (t, 2H, J = 6.5)
Preparation of iodoazidoalkanes:
A solution of chloroazidoalkane (50 mmol) and sodium
iodide (7.5 g, 2 eq) in acetone was heated at reflux for 20
hours. After removal of the solvent in vacuo, the residue
was diluted with water (30 ml), then extracted with ether
(2x50 ml). The organic layers were combined, dried over
anhydrous sodium sulfate. The residue obtained after
removal of the solvent was purified by distillation.
13

~2oosza
1-Iodo-3-azidopropane
Yield 710
Ebo_~ 20-25°C
~H NMR (CDC13, 300 MHz) ~: 2.04 (quint, 2H, J = 7.3), 3.25
(t, 2H, J = 6.7), 3.43 (t, 2ii, J = 6.6).
1-Iodo-4-azidobutane
Yield 75%
Ebo.~ 60°C
~H NrIR (CDC13, 300 MHz) ~5: 1.65-1.76 (m, 2H), 1.85-1.97 (m,
2H), 3.20 (t, 2H, J = 6.7), 3.31 (t, 2H, J = 6.6).
1-Iodo-5-azidopentane
Yield 80%
EB0.1 70°C
1H NMR (CD13, 300 MHz) ~: 1.42-1.5,6 (m, 2H), 1.56-1.68 (m,
2H), 1.78-1.90 (quint, 2H, J = 7.3), 3.19 (t, 2H, J = 6.8),
3.29 (t, 2H, J = 6.6).
Example 7
2-O-Azidoalkyl-beta-cyclodextrin
To a solution of dried f3-cyclodextrin (2.4 g, 2.11
mmol) in DMSO (15 ml) was added lithium hydride (26 mg, 1.5
eq). The mixture was stirred under Argon until the
solution became clear (24 hours). To this solution was
added 1-iodo-n-azidoalkane (1.5 eq). The mixture was
allowed to stand at 60°C for 10 hours. TLC on silica gel
(CH3CN/HZO, 8/2) showed 3 products corresponding to dialkyl,
monoalkyl-f3-cyclodextrin, and starting material. After
evaporation of DMSO in vacuo, the residue was dissolved in
water (5 ml), then applied on a silica gel column (4x40
cm). Elution with CH3CN/HzO, 9/1 removed the dialkyl,
monoalkyl derivatives, and starting material were eluted
with CFi3CN/HZO, 8/2. The pure fractions of monoalkyl-f3
cyclodextrin were combined, the concentrated in vacuo to
give a solid.
14

21p4~~0
....
a
i~~ ~,
O N3 0 0 N3
2-O-Az idopropyl-fi-cy-clodextrin
Yield 250
mp 210°C (dec).
[a]p+141.3° (c 0.22, MeOH). Q
IR (KBr) 3400 (OII) , 2100 (N3) .
~H NMR (DMSO-d6, 300 MHz) ~ : 1.68-1.85 (m, 2H (propyl)(
3.00-3.48 (m, 30H, fI2, H4, (propyl), Hz0), 3.49-3.90 (m,
30II, H3, H5, H6, (propyl) , 4.40-4..60 (m, 7Hi, OH6) , 4.78-
4 .90 (m, 6I-I, H1.) , 4 . 95-5. 05 (m, 1H, H1A) , 5. 60-6. 10 (m, 13H,
OH2, OH3).
'3C NMR (DMSO-d6, 300 MHz) ~ : 28.9, 47. 6 (propyl) , 60.0
(C6), 68.9 (propyl), 71.9, 72.1, 72.3, 72.5 (C2, C5), 72.7
(C3A), 73.1 (C3), 80.8 (C2A), 81.6, 81.7 (C4), 82.2 (C4A)r
100.2 (Cl"), 101.9, 102.0 (Cl).
FABMS C45H~SO35N3 . 1240 (M+Na) .
2-O-Az idobut~l-f3-cyclodextrin
Yield 25%
mp 210°C (dec),
[a]p+127.1° (c 0.22, Hz0) . Q
IR (KBr) 3400 (OH), 2100 (N3).
'H NMR (DMSO-d6, 300 MHz) ~ : 1.50-1.65 (m, 4H (butyl) ) ,
3.22 (dd, 1H, Jz_~ - 3.3; Jz_3 = 10.0, H2A) , 3.22-3.48 (m,
30H, H1, H4, (butyl) , Hz0) , 3.48-3.82 (m, 30H, H2, H5, H6,

X200820
(butyl)), 4.45 (t, 7H, JH6-OH = 5~2, OH6), 4.78-4.86 (m, 6H,
H1) , 4.96 (d, 1H, J~_Z = 3.5, H1A) , 5. 55-6. 00 (m, 13H, OH2,
OH3).
~3C NMR (DMSO-d6, 300 MHz) . 24.8, 26.5, 50.5 (butyl),
60.0 (C6), 71.3 (butyl), 71.8, 71.9, 72.1 72.3, 72.,5 (C2,
C5) , 72.8 (C3A) , 73. 1, 73.2 (C3) , 80.7 (C2A) , 81.6, 81.8,
81.9 (C4), 82.3 (C4A), 100.4 (C1A), 101.9, 102.0 (C1).
FABMS C46H7~035N3 ~ 12 54 ( M+Na ) .
2-O-Az idopentyl-f3-c~clodextrin
Yield 300
mp 230°C (dec).
[a]p+115.5° (c 0.20, MeOH).
IR (KBr) 3400 (OH), 2100 (N3).
~H NMR (DMSO-d6, 300 MHz) . 1.28-1.40 (m, 2H (pentyl),
1.47-1.60 (m, 4H (pentyl) ) , 3.21 (dd, 1H, JZ_~ = 3.3, J2_3 =
9.7, H2A), 3.21-3.48 (m, 30H, H2, H4, (pentyl), H20), 3.48-
3.82 (m, 30H, H3, H5, H6, (pentyl) ) ) , 4.47 (t, 7H, JH6-OH
5.3, OH6) , 4.78-4.87 (m, 6H, H1) , 4.96 (d, 1H, J~_Z = 3.3,
H1A), 5.55-6.00 (m, 13H, OH2, OH3).
~3C NMR (DMSO-d6, 300 MHz) . 22.5, 28.0, 50.6 (pentyl),
60.0 (C6), 71.7 (pentyl), 71.8, 72.1 , 72.3, 72.5 (C2, C5),
72.8 (C3A), 73.1 (C3), 80.7 (C2A), 81.6, 81.8 (C4), 82.3
(C4A), 100.4 (ClA), 101.9, 102.0 (C1).
FABMS C4~H79035N3 ~ 12 6 8 ( M+Na ) .
Example 8
2-O-Azidoalkyl-alpha-cyclodextrin and
3-O-Azidoalkyl-alpha-cyclodextrin
16

~~a~82~
To a solution of dried a-cyclodextrin (2.4 g, 2.46
mmol) in DMSO (15 ml) was added lithium hydride (30 mg, 1.5
eq). The mixture was stirred under Argon until the .
solution became clear (24 hours). To this solution was
added 1-iodo-n-azidoal)cane (1.5 eq). The mixture was
allowed to stand at 60°C for 10 hours. TLC on silica gel
(CH3CN/HZO, 8/2) showed 3 products corresponding to dialkyl,
monoalkyl-a-cyclodextrin, and starting material. After
evaporation of DMSO in vacuo, the residence was dissolved
in water (5 ml), then applied on a silica gel column (4x40
cm) . Elution with CIi3CN/HZO, 9/1 removed the dialkyl,
monoalkyl derivatives, and starting material were eluted
with CH3CN/H20, 8/2. The pure fractions of monoalkyl-a-
cyclodextrin were combined, then concentrated in vacuo to
give a solid. The '3C NMR spectra showed that the
alkylation had occurred at C-2 and'C-3 positions at almost
the same ratio.
N~
N~~ N3
N. I,
~3
a
a
/~ O
O
2- -O-Azidopro~~yl-a-cyclodextrin and 3-O-Azidopropyl-a-
cyclodextrin
a
Yield 300
a.(3) O~N3
mp 165°C (dec).
[a]p+136.4° (c 0.22, MeOII) .
IR (I<Br) 3400 (OI3) , 2100 (N3) .
~H NMR (DMSO-d6, 3200 MHz) ~ : 1.68-1.82 (m, 2H (propyl),
3.18 (dd, 1H, Jz_~ = 3.3, Jz_3 = 9.4, H2A) , 3.20-3.48 (m, 26H,
17

~~008~0
H2, H4, (propyl), Hz0), 3.48-3.88 (m, 25H, H3, H5, H6,
(propyl) , 3.90 (td, 1H, J3_Z = J3_4 = 8 ~ 9, JH3-OH = 2 ~9, H3A)
5.35-5.75 (m, 11H, OH2, OH3).
On the ~3C NMR spectrum the peaks corresponding to 2-O-
Azidopropyl-a-cyclodextrin were assigned as following:
'3C NMR (DMSO-d6, 300 MHz) ~ : 28.9, 47.6 (propyl) , 60.0
(C6), 68.6 (propyl), 71.9, 72.2 (C2, C5), 72.8 (C3A), 73.2,
73.4 (C3) , 80.6 (C2A) , 81.8, 82.2, 82.4 (C4) , '82.7 (C4A) ,
100.0 (C1f'), 102.1, 102.2 (C1).
FABMS C39Fi6s03oN3 ~ 1078 (M+Na)
2-O-Azidobutyl-a-cyclodextrin, and 3-O-Azidobutyl-a-cyclo-
dextrin
a
2 o z ( 3) Oi~~ N3
Yield 36%
mp 220°C (dec).
[a]o+123.5° (C 0.37, MeOH).
IR (KBr) 3400 (OH), 2100 (N3).
~H NMR (DMSO-d6, 300 MHz) ~ : 1.45-1.65 (m, 4H, (butyl)),
3. 18 (dd, 1H, JZ_~ = 3.0, Jz_3 = 9.8, H2A) , 3. 22-3.48 (m, 26H,
H2, H4, (butyl), Hz0), 3.48-3.82 (m, 23fi, H3, H5, H6), 3.84-
3.96 (m, 3H, H3A, (butyl) ) , 4 . 39-4. 60 (m, 6H, OH6) , 4.74-
4 .84 (m, 5H, H1) , 4 .95 (d, 1H, Ji_z = 3.1, H1A) , 5.32-5.80
(m, lli-i, OH2, OH3) .
On the '3C NMR spectrum the peaks corresponding to 2-O-
Azidobutyl-a-cyclodextrin were assigned as following:
~3C NMR (DMSO-d6, 300 MHz) ~: 24.8-26.6, 50.6 (butyl), 60.0
(C6), 71.0 (butyl), 71.9, 72.2 (C2, C5), 72.8 (C3"), 73.1,
73.2, 73.3, 73.4 (C3), 80.4 (C2A), 81.8, 82.1, 82.4 (C4),
18

2~~~~~0
82.7 (C4~) , 102. 0, 1.02.1 (C1) .
FABI~IS C4~II6~03oN3 . 1092 (M-i-Na) .
2-O-AzidopPntYl a cyclodextrin and 3-0-Azidopentvl-a-
cyclodextrin
a.
2(~~ O N3
Yield 300
mp 235°C (dec).
(a]p+108.5° (c 0.37, MeOH) .
IR (KBr) 3400 (OH) , 2100 (N3) .
III NMR (DMSO-d6) , 300 MHz) ~ : 1. 28,-1.40 (m, 2H (pentyl) ) ,
1. 42-1. 60 (m, 4H (pentyl) , 3 . 12-3. 19 (m, 1H, H2A) , 3 . 19-3.45
(m, 26f-I, H2, H4, (pentyl) , H20) ) , 3.45-3.82 (m, 23FI, H3, H5,
H6), 3.82-3.95 (m, 31i, H3", (pentyl)), 4.4,0-4.58 (m, 6H,
OI16) , 4 .74-4.85 (m, 5I-i, I-I1) , 4 .94 (d, lI-i, J~_z = 3 . 1 H1A) ,
5.33-5.72 (m, 11H, 0132, Oft3) .
On.the '3C NMR spectrum the peaks corresponding to 2-O-
Azidopentyl-a-cyclodextrin were assigned as following:
~3C NMR (DMSO-d6, 300 I~IEIz) ~ . 22.5, 28.0, 28.9, 50.6
(pentyl), 60.0 (C6), 71.4 (pentyl), 71.7, 71.9, 72.2, 72.3
(C2 C5), 72.8 (C3''), 73.2, 73.3, 73.4, 73.6 (C3), 80.4
(C2~') , 81.8, 82. l, 82.4 (C4) , 82.7 (C4~) , 100. 1 (ClA) , 101.9,
102.0, 102.1, 102.2 (C1).
FABMS C4~H69030N3 ~ 1106 (M+Na) .
The novel compounds of this invention have
properties similar to those of the known cyclodextrins.
Although embodiments of the invention have been
described above, it is not limited thereto and it will be
apparent to those s)cilled in the art that numerous
modifications form part of the present invention insofar as
19

~~oo~~o ..
they do not depart from the spirit, nature and scope of the
claimed and described invention.

Dessin représentatif
Une figure unique qui représente un dessin illustrant l'invention.
États administratifs

2024-08-01 : Dans le cadre de la transition vers les Brevets de nouvelle génération (BNG), la base de données sur les brevets canadiens (BDBC) contient désormais un Historique d'événement plus détaillé, qui reproduit le Journal des événements de notre nouvelle solution interne.

Veuillez noter que les événements débutant par « Inactive : » se réfèrent à des événements qui ne sont plus utilisés dans notre nouvelle solution interne.

Pour une meilleure compréhension de l'état de la demande ou brevet qui figure sur cette page, la rubrique Mise en garde , et les descriptions de Brevet , Historique d'événement , Taxes périodiques et Historique des paiements devraient être consultées.

Historique d'événement

Description Date
Inactive : Regroupement d'agents 2013-10-22
Inactive : Périmé (brevet - nouvelle loi) 2013-07-19
Requête visant une déclaration du statut de petite entité reçue 2010-06-18
Déclaration du statut de petite entité jugée conforme 2010-06-18
Déclaration du statut de petite entité jugée conforme 2009-06-09
Requête visant une déclaration du statut de petite entité reçue 2009-06-09
Déclaration du statut de petite entité jugée conforme 2008-04-18
Accordé par délivrance 1999-11-02
Inactive : Page couverture publiée 1999-11-02
Préoctroi 1999-07-29
Inactive : Taxe finale reçue 1999-07-29
Lettre envoyée 1999-06-09
Un avis d'acceptation est envoyé 1999-06-09
Un avis d'acceptation est envoyé 1999-06-09
Inactive : Renseign. sur l'état - Complets dès date d'ent. journ. 1999-06-01
Inactive : Dem. traitée sur TS dès date d'ent. journal 1999-06-01
Inactive : Approuvée aux fins d'acceptation (AFA) 1999-05-20
Toutes les exigences pour l'examen - jugée conforme 1996-04-22
Exigences pour une requête d'examen - jugée conforme 1996-04-22
Demande publiée (accessible au public) 1995-01-20

Historique d'abandonnement

Il n'y a pas d'historique d'abandonnement

Taxes périodiques

Le dernier paiement a été reçu le 1999-06-22

Avis : Si le paiement en totalité n'a pas été reçu au plus tard à la date indiquée, une taxe supplémentaire peut être imposée, soit une des taxes suivantes :

  • taxe de rétablissement ;
  • taxe pour paiement en souffrance ; ou
  • taxe additionnelle pour le renversement d'une péremption réputée.

Veuillez vous référer à la page web des taxes sur les brevets de l'OPIC pour voir tous les montants actuels des taxes.

Historique des taxes

Type de taxes Anniversaire Échéance Date payée
TM (demande, 4e anniv.) - petite 04 1997-07-21 1997-06-05
TM (demande, 5e anniv.) - petite 05 1998-07-20 1998-05-28
TM (demande, 6e anniv.) - petite 06 1999-07-19 1999-06-22
Taxe finale - petite 1999-07-29
TM (brevet, 7e anniv.) - petite 2000-07-19 2000-07-12
TM (brevet, 8e anniv.) - petite 2001-07-19 2001-07-09
TM (brevet, 9e anniv.) - petite 2002-07-19 2002-07-03
TM (brevet, 10e anniv.) - petite 2003-07-21 2003-07-03
TM (brevet, 11e anniv.) - petite 2004-07-19 2004-07-15
TM (brevet, 12e anniv.) - petite 2005-07-19 2005-07-07
TM (brevet, 13e anniv.) - petite 2006-07-19 2006-06-06
TM (brevet, 14e anniv.) - petite 2007-07-19 2007-04-18
TM (brevet, 15e anniv.) - petite 2008-07-21 2008-04-18
TM (brevet, 16e anniv.) - petite 2009-07-20 2009-06-09
TM (brevet, 17e anniv.) - petite 2010-07-19 2010-06-18
TM (brevet, 18e anniv.) - petite 2011-07-19 2011-04-18
TM (brevet, 19e anniv.) - petite 2012-07-19 2012-07-06
Titulaires au dossier

Les titulaires actuels et antérieures au dossier sont affichés en ordre alphabétique.

Titulaires actuels au dossier
STEPHEN HANESSIAN
Titulaires antérieures au dossier
S.O.
Les propriétaires antérieurs qui ne figurent pas dans la liste des « Propriétaires au dossier » apparaîtront dans d'autres documents au dossier.
Documents

Pour visionner les fichiers sélectionnés, entrer le code reCAPTCHA :



Pour visualiser une image, cliquer sur un lien dans la colonne description du document. Pour télécharger l'image (les images), cliquer l'une ou plusieurs cases à cocher dans la première colonne et ensuite cliquer sur le bouton "Télécharger sélection en format PDF (archive Zip)" ou le bouton "Télécharger sélection (en un fichier PDF fusionné)".

Liste des documents de brevet publiés et non publiés sur la BDBC .

Si vous avez des difficultés à accéder au contenu, veuillez communiquer avec le Centre de services à la clientèle au 1-866-997-1936, ou envoyer un courriel au Centre de service à la clientèle de l'OPIC.


Description du
Document 
Date
(aaaa-mm-jj) 
Nombre de pages   Taille de l'image (Ko) 
Description 1995-06-07 20 1 171
Abrégé 1995-06-07 1 36
Page couverture 1995-06-07 1 47
Revendications 1995-06-07 3 149
Description 1999-05-07 20 654
Revendications 1999-05-07 3 79
Page couverture 1999-10-28 1 21
Dessin représentatif 1999-10-28 1 2
Avis du commissaire - Demande jugée acceptable 1999-06-09 1 165
Taxes 2003-07-03 1 48
Correspondance 1999-07-29 1 58
Taxes 1999-06-22 1 59
Taxes 2000-07-12 1 60
Taxes 1998-05-28 1 53
Taxes 2001-07-09 1 59
Taxes 2002-07-03 1 65
Taxes 1997-06-05 1 63
Taxes 2004-07-15 1 43
Taxes 2005-07-07 1 44
Taxes 2006-06-06 1 44
Taxes 2007-04-18 1 52
Taxes 2008-04-18 1 52
Correspondance 2009-06-09 1 56
Taxes 2009-06-09 1 56
Correspondance 2010-06-18 1 59
Taxes 2010-06-18 1 57
Taxes 2011-04-18 1 55
Taxes 2012-07-06 1 55
Taxes 1996-04-24 1 62
Taxes 1995-06-09 1 52
Courtoisie - Lettre du bureau 1996-05-22 1 50
Correspondance de la poursuite 1996-04-24 1 51
Correspondance de la poursuite 1999-03-25 2 45
Correspondance de la poursuite 1998-11-09 5 197
Correspondance de la poursuite 1998-12-07 2 39
Demande de l'examinateur 1999-01-08 1 36
Demande de l'examinateur 1998-05-08 2 62