Sélection de la langue

Search

Sommaire du brevet 2104179 

Énoncé de désistement de responsabilité concernant l'information provenant de tiers

Une partie des informations de ce site Web a été fournie par des sources externes. Le gouvernement du Canada n'assume aucune responsabilité concernant la précision, l'actualité ou la fiabilité des informations fournies par les sources externes. Les utilisateurs qui désirent employer cette information devraient consulter directement la source des informations. Le contenu fourni par les sources externes n'est pas assujetti aux exigences sur les langues officielles, la protection des renseignements personnels et l'accessibilité.

Disponibilité de l'Abrégé et des Revendications

L'apparition de différences dans le texte et l'image des Revendications et de l'Abrégé dépend du moment auquel le document est publié. Les textes des Revendications et de l'Abrégé sont affichés :

  • lorsque la demande peut être examinée par le public;
  • lorsque le brevet est émis (délivrance).
(12) Demande de brevet: (11) CA 2104179
(54) Titre français: COMPENSATION DES ACCELERATIONS ET DES INCLINAISONS DE MODE COMMUN SUR PLATE-FORME MOBILE
(54) Titre anglais: ISOLATION OF ENVIRONMENTAL ACCELERATIONS AND TILTS ON MOVING PLATFORM
Statut: Réputée abandonnée et au-delà du délai pour le rétablissement - en attente de la réponse à l’avis de communication rejetée
Données bibliographiques
(51) Classification internationale des brevets (CIB):
  • G5D 3/12 (2006.01)
  • G1C 9/08 (2006.01)
  • G1C 21/18 (2006.01)
  • G1V 7/16 (2006.01)
  • G5D 13/62 (2006.01)
(72) Inventeurs :
  • PANENKA, JERRY R. (Canada)
(73) Titulaires :
  • NORANDA INC.
  • CANAGRAV RESEARCH LTD.
(71) Demandeurs :
  • NORANDA INC. (Canada)
  • CANAGRAV RESEARCH LTD. (Canada)
(74) Agent: FRANCOIS NADEAUNADEAU, FRANCOIS
(74) Co-agent:
(45) Délivré:
(22) Date de dépôt: 1993-08-16
(41) Mise à la disponibilité du public: 1995-02-17
Requête d'examen: 1993-08-16
Licence disponible: S.O.
Cédé au domaine public: S.O.
(25) Langue des documents déposés: Anglais

Traité de coopération en matière de brevets (PCT): Non

(30) Données de priorité de la demande: S.O.

Abrégés

Abrégé anglais


12
Abstract of the Disclosure:
A system for compensating for horizontal
common-mode acceleration and tilt on a moving platform
including a laboratory motion isolation table or
borehole logging probe, by transforming horizontal
accelerations of the platform into vertical
accelerations, comprises a tilt table mounted on the
platform, a sensor mounted on the tilt table or on the
platform for sensing linear accelerations and tilts to
which the platform is subjected, and a tilting device
mounted on the platform and responsive to the sensor for
tilting the tilt table to compensate for horizontal
accelerations and tilts to which the platform is
subjected.

Revendications

Note : Les revendications sont présentées dans la langue officielle dans laquelle elles ont été soumises.


9
CLAIMS
1. A system for compensating for horizontal common-
mode acceleration and tilt on a moving platform
including a laboratory motion isolation table or
borehole logging probe, by transforming horizontal
accelerations of the platform into vertical
accelerations, comprising:
a) a tilt table mounted on the platform;
b) a sensor mounted on the tilt table or on the
platform for sensing linear accelerations and
tilts to which the platform is subjected; and
c) a tilting device mounted on the platform and
responsive to the said sensor for tilting the
tilt table to compensate for horizontal
accelerations and tilts to which the platform
is subjected.
2. A system as defined in claim 1, wherein the sensor
is a horizontal accelerometer or an electronic bubble
level, in closed feedback loop with the said tilting
device.
3. A system as defined in claim 1, wherein in case of
accelerometer-based gravity gradiometry using
accelerometer pairs, the sensor output is provided by at
least one accelerometer of the gradiometer pairs, in
closed feedback loop with the said tilting device.
4. A system as defined in claim 1, wherein the sensor

is an Inertial Measurement Unit (IMU), which may be
installed either on a tilt table capable of working in a
Shuler-tuned closed loop configuration with the tilting
device, or separately in open loop configuration with
the tilting device, as a part of an autopilot, motion
compensation or other device.
5. A system as defined in claim 1, further comprising
a feedback controller responsive to the output of the
sensor for applying a regulated feedback control to the
tilting device to cause the table to tilt by an angle
that will compensate for horizontal accelerations and
tilts.
6. A system as defined in claim 5, wherein the
feedback controller is a proportional-integral-
derivative feedback controller.
7. A system as defined in claim 1 wherein said tilt
table is a two-stage table comprising a first coarsely
controlled stage using a servo-motor as a tilting
device, and a second finely-controlled stage using a
transducer as a tilting device.
8. A system as defined in claim 7, wherein the second
stage includes a high frequency vibration insolation
stage comprising x, y,z translation devices responsive
to vibration sensors.
9. A system as defined in claim 7, wherein the sensor

11
and tilting device are combined in a single
sensor/tilting unit.
10. A system as defined in claim 9, wherein the
sensor/tilting unit is a critically-damped pendulum.
11. A system as defined in claim 9, wherein the
sensor/tilting unit is a dish filled with liquid, on
which the tilt table floats.

Description

Note : Les descriptions sont présentées dans la langue officielle dans laquelle elles ont été soumises.


,
:~ ISOL~ATION OF I~NVIRONDlEMTAI~
ACC13L~3RATIONS AND TII~TS ON MOVING PI.ATFORM
! This invention relates to a system for compensating
for the effects of horizontal accelerations and tilts,
on a moving platform, such as an air-, land-, water-, or
space-borne vehicle or in a borehole-logging probe, or
on a laboratory motion isolation (seismic) table.
~ac~ground of the Invention
When carrying out high resolution measurements
involving free or partially free masses on a moving
platform, it is often desirable to compensate for the
effect of horizontal accelerations as well as tilts.
For example, let us consider an air-borne gravity
gradiometer based either on pendulous or other
accelerometer pairs. One way to reduce the effect of
horizontal common-mode acceleration on the above sensors
is to match the accelerometers over a very broad dynamic
range and to closely maintain their alignment. Neither
may be attainable to a sufficient degree with present
technology.

1 7 9
Tilts can, with expensive gimballed platforms, be
, ~ maintained to within a few micro-radians. Compensation
for horizontal accelerations (which are typically .01 -
.02 G during survey regime) has not been accomplished to
date.
Statement of Invention
`~ The present invention is based on the principle of
3 equivalence between tilt ~ (x,) and ~ (y) and horizontal
accelerations (x) or (y), which states that an
accelerometer cannot distinguish between horizontal
acceleration and tilt. Consequently, the effect of x
and y on a moving platform can be compensated for by
tilting the platform by an angle ~ (x,y),
where tan ~ (x) = x
tan ~ (y) = y with x and y
expressed in G's
This operation transforms (in platform body co-
ordinates), horizontal accelerations x, y into a
vertical acceleration z, to which a pendulous hori~ontal
accelerometer is relatively insensitive. Tilting is the
most effective way to compensate for large-amplitude,
low-frequency (below 1 Hz) horizontal accelerations.
High-frequency, low amplitude motions (vibrations) can
be attenuated, for example with a piezo-electric (PZT)
driven translational x, y, z stage.
.

The system in accordance with the present invention
comprises a tilt table mounted on a moving platform
including a laboratory motion isolation table or a
borehole logging probe, a sensor mounted on the tilt
3 5 table or on the platform for sensing linear
accelerations and tilts to which the platform is
subjected, and a tilting device mounted on the platform
~; and responsive to the sensor for tilting the tilt tableto compensate for horizontal accelerations and tilts to
which the platform is subjected.
The sensor may be, for example, a horizontal
I accelerometer such as the QA 3000 manufactured by
Sundstrand Data Control Inc., Redmond, Wash., or an
electronic bubble level in closed feedback loop with the
tilting device.
The sensor may also be an Inertial Measurement Unit
(IMU) like H423 manufactured by Honeywell Inc. of
Clearwater, Florida. If an IMU is used as a gravity
sensor, it can be, for lower noise, installed on a tilt
table in a Shuler-tuned closed loop configuration with
the tilting device. Alternatively, the IMU may be a
part of an autopilot, motion compensation or other
device, working in open-loop configuration with the
tilting device.
In the case of accelerometer-based gravity
gradiometry, the sensor output may be provided by
;., ,, , : , , : ,
.. . . . -

accelerometers of the gradiometer pairs. In this
application, the sensor may be a part of the feedback
loop with the tilting device thus substantially
eliminating the horizontal cornmon-mode component of the
gravity gradient signal.
The sensor output signal is preferably processed
through a feedback controller for applying a regulated
feedback control to the tilting device to cause the
sensor base to tilt by an angle that will compensate for
horizontal accelerations and tilts. The feedback
controller is preferably a proportional-integral-
derivative feedback controller.
The tilt table may be a two stage table comprising
a first coarsely controlled stage using a servo-motor as
lS a tilting device, and a second finely controlled stage
using a transducer as a tilting device.
The sensor and tilting device may be combined in a
single sensor/tilting unit. The sensor/tilting unit may
be a critically-damped pendulum or a "dish" filled with
liquid, on which the tilt table floats. In either cases
a feedback controller will not be required for the first
coarse stage.
Short Descri~tion of ths Drawing
The invention will now be disclosed, by way of
example, with reference to preferred embodiments
illustrated in the accompanying drawings in which:
.: :, : : : . . .

~1UL1j ~ 9
~:l 5
:~ Figure 1 shows a two-stage, two degrees of freedom
(DOF), pitch and roll, active motion isolation table
configuration which will attenuate residual horizontal
. accelerations and tilts;
~3 5 Figure 2 shows a single-stage, DOF (pitch and
; roll), active motion isolation table configurationi and
; Figure 3 shows a two-stage, active motion isolation
table configuration similar to Figure 1 which will
additionally attenuate vibrations along x, y and z axes
(five or six DOF).
~etailed Descri~tion of a Preferred ~mbodiment
Referring to Figure 1, there is shown a two-stage
tilt table in the form of a coarsely-controlled table
and a finely-controlled table 2, which are affected by
i 15 linear acceleration disturbance (t) and angular tilt
disturbance (t). In accordance with the present
invention, both of these disturbances are compensated
for by tilting the sensor base by angle O (table 2),
using a servo-motor 3 operating a precision lead screw
(not shown) to provide a linear displacement to a ~.
resolution of about 5 - 10 micro-radians. For greater
resolution than can be achieved with a mechanical ,
device, a pie~oelectric device (PZT) device, or electro - - -.
strictive or magneto-strictive (EST or MST
respectively), or any other suitable transducer 4 is
mounted on table 1 to provide a resolution of the order
,: , . :
i':.; :' : , ,
,

7 9
of 10 nano-radians or better.
or the purpose of the description, it is assumed
that the disturbances to be compensated for are in the
(x, z) vertical plane of motion. The tilt tables may
however be modified to accommodate motions in all six
degrees of freedom.
In the present embodiment, the sensors are
pendulous acceleration sensors 5 and 6, which are
mounted on tables 1 and 2 respectively to sense
horizontal accelerations (and tilts). The output
voltage V(t) of each accelerometer is sensed by à
detector 7 and fed to a feedback controller 8 which
applies a feedback voltage to the servo-motor or the PZT
through a suitable driver 9 if required to thereby null
the output voltages V(t) of the pendulous
accelerometers.
For less demanding applications, a single-stage,
two-DOF tilt table, as illustrated in Figure 2, may
provide a simpler, less expensive alternative. The ~ -
disturbances sensed by sensor 10 mounted on table 11 are ~ ~-
applied to a feedback controller 12 or 13 or both.
Coarse deviations may be compensated by a servo-motor 14
through a suitable driver 15 while fine deviations of ~-~
the order of 10 nano-radians may be compensated by a PZT
16.

,~ l U ~~L l 7 9
.
'! 7
i On a seismic isolation table, where compensating
tilts may be limited to several micro-radians, a PZT (or
EST or MST) stage only can be used.
Figure 3 is a two-stage stabilized platform
~ 5 configuration such as shown in Figure 1 wherein stage 2
¦ additionally includes a x,y,z vibration isolation stage
' which is part of the tilt table. In this embodiment
high fre~uency low-amplitude vibrations can be
attenuated with x,y,z translation devices such as piezo- - -
electric (PZT) devices 4, 16, 17 working in closed loop
with a suitable triaxial vibration sensor 18.
The configuration shown in Figure 3 can accommodate
five degrees of freedom. The sixth degree (yaw
compensation) is not shown but can be added using the
same technique.
A Proportional-Integral-Derivative (PID) feedback
control is preferably used to stabilize the table as a
function of the pendulum output where:
e = KpV + Kd V + Ki ¦ Vdt +Vn
where e = voltage applied to the PZT
Kp = proportional control gain
Ki = integral control gain
Kd = derivative control gain
Vn = electronic noise
If the tilt assembly is critically damped (i.e. no
control induced oscillations) then the gains of each

r~ 9
:. 8
: control component are related such that:
~:,
K2p - 4 KdKi > 0
and ~c = Ki/Kp < 0.1 Hz
such that integral control is used effectively where it
is needed most (in this case for frequencies ~c less
than 0.1 Hz).
, All modes of PID control are needed because:
`. 1) Proportional: is usually needed with integral and
derivative control.
~, 10 2) Integral: is required for reducing the steady
state tilt angle in the feedback
~, loop because tilt frecluencies close
`~ to DC require a high gain.
3) Derivative: for decreasing the feedback response
j 15 time at high frequencies as well as
applying a phase-lead control.
Although the invention has been disclosed, by way
of example, with reference to preferred embodiments, it :~
is to be understood that it is not limited to such
embodiments and that other alternatives are also
envisaged within the scope of the following claims: ~-~

Dessin représentatif
Une figure unique qui représente un dessin illustrant l'invention.
États administratifs

2024-08-01 : Dans le cadre de la transition vers les Brevets de nouvelle génération (BNG), la base de données sur les brevets canadiens (BDBC) contient désormais un Historique d'événement plus détaillé, qui reproduit le Journal des événements de notre nouvelle solution interne.

Veuillez noter que les événements débutant par « Inactive : » se réfèrent à des événements qui ne sont plus utilisés dans notre nouvelle solution interne.

Pour une meilleure compréhension de l'état de la demande ou brevet qui figure sur cette page, la rubrique Mise en garde , et les descriptions de Brevet , Historique d'événement , Taxes périodiques et Historique des paiements devraient être consultées.

Historique d'événement

Description Date
Inactive : CIB de MCD 2006-03-11
Inactive : CIB de MCD 2006-03-11
Inactive : CIB de MCD 2006-03-11
Le délai pour l'annulation est expiré 1998-08-17
Demande non rétablie avant l'échéance 1998-08-17
Réputée abandonnée - omission de répondre à un avis sur les taxes pour le maintien en état 1997-08-18
Demande publiée (accessible au public) 1995-02-17
Exigences pour une requête d'examen - jugée conforme 1993-08-16
Toutes les exigences pour l'examen - jugée conforme 1993-08-16

Historique d'abandonnement

Date d'abandonnement Raison Date de rétablissement
1997-08-18
Titulaires au dossier

Les titulaires actuels et antérieures au dossier sont affichés en ordre alphabétique.

Titulaires actuels au dossier
NORANDA INC.
CANAGRAV RESEARCH LTD.
Titulaires antérieures au dossier
JERRY R. PANENKA
Les propriétaires antérieurs qui ne figurent pas dans la liste des « Propriétaires au dossier » apparaîtront dans d'autres documents au dossier.
Documents

Pour visionner les fichiers sélectionnés, entrer le code reCAPTCHA :



Pour visualiser une image, cliquer sur un lien dans la colonne description du document (Temporairement non-disponible). Pour télécharger l'image (les images), cliquer l'une ou plusieurs cases à cocher dans la première colonne et ensuite cliquer sur le bouton "Télécharger sélection en format PDF (archive Zip)" ou le bouton "Télécharger sélection (en un fichier PDF fusionné)".

Liste des documents de brevet publiés et non publiés sur la BDBC .

Si vous avez des difficultés à accéder au contenu, veuillez communiquer avec le Centre de services à la clientèle au 1-866-997-1936, ou envoyer un courriel au Centre de service à la clientèle de l'OPIC.


Description du
Document 
Date
(yyyy-mm-dd) 
Nombre de pages   Taille de l'image (Ko) 
Page couverture 1995-02-16 1 31
Abrégé 1995-02-16 1 27
Revendications 1995-02-16 3 120
Dessins 1995-02-16 3 85
Description 1995-02-16 8 325
Dessin représentatif 1998-05-10 1 12
Courtoisie - Lettre d'abandon (taxe de maintien en état) 1997-09-30 1 188
Taxes 1996-08-05 1 31
Taxes 1995-07-16 1 44
Demande de l'examinateur 1994-07-20 2 68
Courtoisie - Lettre du bureau 1996-07-24 1 18
Correspondance reliée au PCT 1996-04-11 3 70
Correspondance reliée au PCT 1996-01-25 1 26
Courtoisie - Lettre du bureau 1996-07-24 1 15
Courtoisie - Lettre du bureau 1994-04-10 1 29
Courtoisie - Lettre du bureau 1996-02-29 2 18
Demande de l'examinateur 1996-10-24 2 84
Correspondance de la poursuite 1994-11-17 2 35
Correspondance de la poursuite 1997-04-22 5 228