Sélection de la langue

Search

Sommaire du brevet 2110218 

Énoncé de désistement de responsabilité concernant l'information provenant de tiers

Une partie des informations de ce site Web a été fournie par des sources externes. Le gouvernement du Canada n'assume aucune responsabilité concernant la précision, l'actualité ou la fiabilité des informations fournies par les sources externes. Les utilisateurs qui désirent employer cette information devraient consulter directement la source des informations. Le contenu fourni par les sources externes n'est pas assujetti aux exigences sur les langues officielles, la protection des renseignements personnels et l'accessibilité.

Disponibilité de l'Abrégé et des Revendications

L'apparition de différences dans le texte et l'image des Revendications et de l'Abrégé dépend du moment auquel le document est publié. Les textes des Revendications et de l'Abrégé sont affichés :

  • lorsque la demande peut être examinée par le public;
  • lorsque le brevet est émis (délivrance).
(12) Brevet: (11) CA 2110218
(54) Titre français: METHODE DE GENERATION DE FONCTIONS DE CORRECTION POUR L'ELIMINATION DES ERREURS DE PHASE ET AMPLITUDE DANS UN SIGNAL COMPRIME
(54) Titre anglais: METHOD OF GENERATING A CORRECTION FUNCTION FOR AN ELIMINATION OF PHASE AND AMPLITUDE ERRORS OF A COMPRESSED SIGNAL
Statut: Périmé et au-delà du délai pour l’annulation
Données bibliographiques
(51) Classification internationale des brevets (CIB):
  • H03H 11/04 (2006.01)
(72) Inventeurs :
  • MOREIRA, ALBERTO (Allemagne)
(73) Titulaires :
  • DEUTSCHE FORSCHUNGSANSTALT FUR LUFT- UND RAUMFAHRT E.V.
(71) Demandeurs :
  • DEUTSCHE FORSCHUNGSANSTALT FUR LUFT- UND RAUMFAHRT E.V. (Allemagne)
(74) Agent: SMART & BIGGAR LP
(74) Co-agent:
(45) Délivré: 1998-11-24
(22) Date de dépôt: 1993-11-29
(41) Mise à la disponibilité du public: 1994-05-31
Requête d'examen: 1993-11-29
Licence disponible: S.O.
Cédé au domaine public: S.O.
(25) Langue des documents déposés: Anglais

Traité de coopération en matière de brevets (PCT): Non

(30) Données de priorité de la demande:
Numéro de la demande Pays / territoire Date
P 42 40 225.5-35 (Allemagne) 1992-11-30

Abrégés

Abrégé français

L'invention est une méthode de génération de fonctions de correction servant à éliminer les erreurs de phase et d'amplitude dans un signal comprimé dans laquelle une fonction de référence (hi(t)) est engendrée selon les spécifications de la demande de brevet P 41 17 849.1-35 et une autre fonction de référence (hf(t)) est engendrée selon les spécifications de la théorie des filtres optimaux. Les fonctions de référence du filtre idéal et du filtre optimal (hi(t) et hf(t)) sont soumises à des transformations de Fourier; l'inverse (1/Hf) de la transformée de Fourier de l'un des signaux (Hf) est multiplié par la transformée de Fourier de l'autre signal (Hi) et le signal obtenu par cette multiplication (Hi/Hf) est soumis à une transformation de Fourier inverse pour donner la fonction de correction (hcorr(t)) dans le domaine temporel.


Abrégé anglais


In a method of generating a correction function for an
elimination of phase and amplitude errors of a
compressed signal a reference function (hi(t)) is
generated in accordance with patent application P 41 17
849.1-35 and a reference function (hf(t)) is generated
by the optimum filter theory. Furthermore, the
reference functions (hi(t) and hf(t)) of the ideal
filter or optimum filter are fourier-transformed; the
reciprocal value (1/Hf) of the one fourier-transformed
signal (Hf) is multiplied by the other
fourier-transformed signal (Hi), and the signal (Hi/Hf)
obtained by the multiplication is subjected to an
inverse fourier transformation for generating a
correction function (hcorr(t)) in the time domain.

Revendications

Note : Les revendications sont présentées dans la langue officielle dans laquelle elles ont été soumises.


THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE
PROPERTY OR PRIVILEGE IS CLAIMED ARE DEFINED AS FOLLOWS:
1. A method of generating a correction function for an elimination of
phase and amplitude errors of a compressed signal, in which for generating
a reference function (hi(t)) an error-free frequency-modulated signal (so(t)), asignal (Sf(t)) containing phase and amplitude errors, a reference signal (ho(t))corresponding to a conjugate complex time-inverted function of an error-free
signal (Sf(t)) and a reference signal (hf(t)) corresponding to a conjugate
complex time-inverted input signal (Sf(t)) are each fourier-transformed to
respective signals (So, Sf, Ho and Hf) in FFT units (6.2, 6.5), then in each case
two of the signals (Sf, Hf; So, Ho) are multiplied together and a reciprocal
value of a signal (Ff) arising from the first multiplication is multiplied by anoutput signal (Fo) arising in the second multiplication and thereupon a
signal (Fo/Ff) is multiplied by a fourier-transformed signal (Hf), and a signal
(Hi) thus obtained is subjected to an inverse transformation for generating
the reference function (hi(t)) in a time domain, and furthermore a reference
function (hf(t)) is generated wherein
a reciprocal value (1/Hf) of the one fourier-transformed signal (Hf) is
multiplied by another fourier-transformed signal (Hi),
a signal (Hi/Hf) obtained by the multiplication is subjected to an inverse
fourier transformation in the time domain in a following IFFT unit (6.7) for
generating a correction function (hcorr(t)), and
a signal (ff(t)) containing phase and amplitude errors and the correction
function (hcorr(t)) are convoluted in a time or frequency domain for
generating an error-free signal (fo(t)).
2. A method of generating a correction function for an elimination of
phase and amplitude errors of a compressed signal, in which for generating
a reference function (hi(t)) a reference signal (ho(t)) corresponding to a

conjugate complex time-inverted function of an error-free
frequency-modulated signal (so(t)) and a signal (Sf(t)) containing phase and amplitude
errors are generated by a fourier transformation to signals (Ho, Sf) which
correspond to the fourier transformation of the signals (ho(t)) and (Sf(t)), a
squared signal ( Ho ) and a reciprocal value (1/Sf) of the other
fourier-transformed signal (Sf) being multiplied together, and a signal (Hi) resulting
from the multiplication being subjected in a time domain to an inverse
transformation to generate the reference function (hi(t)) to generate a
reference function (hf(t)) being generated wherein
a reciprocal value (1/Hf) of a fourier-transformed signal (Hf) is multiplied by
another fourier-transformed signal (Hi),
a signal (Hi/Hf) obtained by the multiplication is subjected in a following
IFFT unit (6.7) to an inverse fourier transformation to generate a correction
function (hcorr(t)) in the time domain, and
a signal (ff(t)) containing phase and amplitude errors and the correction
function (hcorr(t)) are convoluted to generate an error-free signal (fo(t)) in atime or frequency domain.
3. A method of generating a correction function for the elimination of
phase and amplitude errors of a compressed signal (ff(t)) in which from the
compressed signal (ff(t)) a point target response with pronounced
backscattering is selected and a mean backscattering (Zm) of the background
around the point target response is formed; wherein
the mean backscattering (Zm) of the background is subtracted from the
backscattering of the selected point target response in a subtraction unit (7.2);

.
for generating an error-free pulse response (fo(t)) in the convolution unit
(7.5) a convolution is performed between an error-free reference function
(ho(t)) of the optimum filter and an error-free modulated signal (so(t));
the output signals (zh(t), fo(t)) of the subtraction unit (7.2) and a generatingunit (7.5 ) are fourier-transformed,
a reciprocal value (1/Zh) of a fourier-transformed signal (Zh) is multiplied by
a fourier-transformed signal (Fo),
a weighting function (w(t)) is generated and thereafter fourier-transformed
by an FFT unit (7.9); and
a multiplication result (Fo/Zh) is multiplied by a fourier-transformation (W)
of the weighting function (w(t)),
a resulting product (W . Fo/Zh) is thereafter subjected to an inverse fourier
transformation by an IFFT unit (7.11) for generating a correction function
(hcorr(t)) in a time domain, and
a signal (ff(t)) containing phase and amplitude errors and the correction
function (hcorr(t)) are convoluted to generate an error-free signal (fo(t)) in atime or frequency domain.

Description

Note : Les descriptions sont présentées dans la langue officielle dans laquelle elles ont été soumises.


~ ~ ~ Q ~
Method of generating a correction function for an
1 elimination of phase and amplitude errors of a
compressed signal
BACXGROUND OF THE INV~TION
1. Field of the Invention
The invention relates to a method of generating a
correction function for an elimination of phase and
amplitude errors of a compressed signal, a reference
function Hi(t) of an ideal filter being generated and a r~ef~ce function
hf(t) being generated in accordance with the optimum
filter theory.
SUMMARY OF THE INVENTION
The invention has as its object the extension of the
concept of the ideal filter so that phase and amplitude
errors can be eliminated with an already compressed
signal ff(t) after a pulse compression in accordance
with the theory of the optimum filter has already been
carried out.
as
The invention therefore provides a method of generating
a correction function for an elimination of phase and
amplitude errors of a compressed signal, in which for
generating a reference function (hi(t)) an error-free
frequency-modulated signal (so(t)), a signal (Sf(t))
containing phase and amplitude errors, a reference
signal (ho(t)) corresponding to a conjugate complex
time-inverted function of the error-free signal (sf(t))
and a reference signal (hf(t)) corresponding to the
conjugate complex time-inverted input signal (Sf(t))
are each fourier-transformed to respective signals (SO,
Sf, Ho and Hf) in FFT units (6.2, 6.5), then in each
B

2 2110218
.
case two of the signals (Sf, Hf; SO' Ho) are multiplied
1 together and the reciprocal value of the signal (Ff)
arising from the first multiplication is multiplied by
the output signal (Fo) arising in the second
multiplication and thereupon said signal (Fo/Ff) is
multiplied by the fourier-transformed signal (Hf), and
the signal (Hi) thus obtained is subjected to an
inverse transformation for generating the reference
function (hi(t)) in the time domain, and furthermore a
reference function (hf(t)) is generated by the optimum
filter theory, wherein
the reciprocal value (1/Hf) of the one fourier-
transformed signal (Hf) is multiplied by the other
fourier-transformed signal (Hi),
the signal (Hi/Hf) obtained by the multiplication is
subjected to an inverse fourier transformation in the
time domain in a following IFFT unit (6.7) for
generating the correction function (hCorr(t))~ and
a signal (ff(t)) containing phase and amplitude errors
and the correction function (hCorr(t)) are convoluted
in the time or frequency domain for generating an
error-free signal ~fo(t))~
A requirement for carrying out the method according to
the invention is however that the amount ( I + Q ) of
the compressed signal ff(t~ is not formed so that said
signal ff(t) is present as complex function. With the
aid of the reference function hi(t) of the ideal filter
a correction function hCorr(t) is then calculated which
is convoluted with a compressed signal ff(t). The
result of such a convolution is an error-free pulse
response fo(t) because the phase and amplitude errors
of the functions ff(t) are eli~inated by the calculated
functi~n hCorr(t)-
According to a modified further development of the
method of generating a correction function for the
elimination of phase and amplitude errors of the

2110218
-
compressed signals, the phase and amplitude errors may
1 be removed from the actual compressed signal ff(t) if a
pronounced point target response is present in the
compressed signal ff(t). The selected pronounced point
target response is then employed to determine the
function hCorr(t)~ In this case the replica Sf(t) of
the transmitted pulse is not required. The advantage
of such a configuration of an ideal filter resides in
that the information of the phase and amplitude errors
can be taken from the compressed signal ff(t) and that
the processing can be carried out in accordance with
the concept of the ideal filter dir~ctly with the
compressed signal or the corresponding image data.
BRIEF DESCRIPTION OF THE DRAWINGS
The invention will be explained in more detail
hereinafter with reference to preferred embodiments and
with the aid of the attached drawings, wherein:
Fig. 1 shows in the form of a block diagram an
apparatus for carrying out a pulse
compression in the time domain using the
method according to P 41 17 849.1-35 for
obtaining an ideal pulse response in spite of
an erroneous frequency-modulated input
signal;
Fig. 2 shows in the form of a block diagram an
apparatus for generating an ideal pulse
response, a pulse compression being carried
out in the processing in the frequency
domain;
Fig. 3 shows in the form of a block diagram an
apparatus for generating a reference function
hi(t);

4 Z ~ ~2~
Fig. 4 shows in the form of a block diagram a
1 further apparatus for generating a reference
function hi(t);
Fig. 5 shows in the form of a further block diagram
an apparatus for carrying out a pulse
compression using the concept of an ideal
filter according to the invention, a
correction of phase and amplitude errors of a
compressed signal ff(t) being carried out by
convolution with a correction function
- hcorr(t);
Fig. 6 is a block diagram of an embodiment for
performing the method of generating the
correction function hCorr(t) for eliminating
phase and amplitude errors of the compressed
signal ff(t) and
Fig. 7 is a further block diagram of an embodiment
for implementing the method of generating the
correction function hCorr(t) for eliminating
phase and amplitude errors of the compressed
signal ff(t).
DESCRIPTION OF THE PREFERRED EMBODIMENTS
When using the method, acting as a sort of ideal
filter, for generating a reference function hi(t)
as will be described below, a sin(x)/x function can
be obtained independently of the phase and amplitude
errors present in the received signal. A received
signal Sf(t) containing phase and amplitude errors is
convoluted in Fig. 1 in a convolution unit 1 with the
aid of a reference function hi(t), as will be described
below. In Fig. 1 a pulse response fo(t) obtained by
the convolution then has the form of a sin(x)/x
~~~

"- 2 ~I lo21~
function if no amplitude weighting is additionally
1 carried out for suppressing sidelobes.
In Fig. 2 implementation of a me~od of performing a
pulse comp~ession is illustrated, the pulse compression
being shown in the frequency domain by means of a
reference function generated according to P 41 17
849.1-35. ~ received signal Sf(t) and the reference
function hi(t), the determination of which will be
explained in detail below with the aid of Fig. 3 or 4,
are each-fourier-transformed by FFT units 2.1 and 2.3
respectively, the spectra Sf and Hi thereby being
obtained. The two spectra Sf and Hi are multiplied
together in a multiplying unit 2.2 and then subjected
to an inverse fourier transformation (IFFT) by an IFFT
unit 2.4 and thereby transformed to the time domain.
The pulse response fo(t) present at the output of the
IFFT unit 2.4 then has the form of a sin(x)/x function.
The reference function hi(t) m~st then be determined by
performing a pulse compression. In Fig. 3, in the form
of a block diagram an embodiment is illustrated for
determining the reference function hi(t) with the aid
of a fast fourier transformation (F~T). By FFT units
3.1 to 3.4 the signals applied Sf(t), so(t), hf(t) and
ho(t~ are fourier-transformed to the frequency domain.
The two signals so(t) and sf(t) here relate to the
backscattering of only a single point target. The
signal Sf(t) therefore corresponds to the replica of
the transmitted pulse and is measured directly on
reception whilst the signal so(t) can be determined
from parameters such as the modulation rate and
duration of the frequency modulation, contains no phase
and amplitude errors and exhibits a linear frequency
modulation. The reference functions hf(t) and ho(t)
are determined from conjugate complex functions of the
signal Sf(t) and the signal so(t) respectively.
B

6 211021~
1 As can be seen from Fig. 3, signals Ff and Fo are
obtained by multiplying the spectra Sf and Hf and SO
and Ho in multiplying unitS3.5 and 3.6. The signal Ff
thus corresponds to the fourier-transformed pulse
response ff(t) whilst the signal Fo corresponds to the
fourier-transformed pulse response fo(t)~
A reciprocal value l/Ff of the signal Ff formed in a
unit 3.7 is multiplied by the signal Fo in a further
multiplying member 3.8 so that the signal Fo/Ff is
obtained which plays the part of a correction signal.
Phase and amplitude errors in the pulse compression can
be eliminated by means of this correction signal. In a
further multiplying member 3.9 the correction signal
Fo/Ff is multiplied by the fourier-transformed signal
Hf.
For pulse compression in the frequency domain the
signal Hi can be multiplied by the signal Sf in the
multiplying unit 2. If a pulse compression is to be
carried out in the time domain as well, the signal Hi
is fourier-transformed by an IFFT unit 3.10, thereby
obtaining the reference function hi(t).
A further generation of the reference function hi(t) of
the ideal filter is illustrated in Fig. 4. The signal
Sf(t) here corresponds to the replica of the
transmitted signal and thus contains all the phase and
amplitude errors which have occurred on transmission
and reception. The signal ho(t) corresponds to the
error-free reference function so(t) with a linear
frequency modulation. Signals Ho and Sf are generated
from the signals ho(t) and Sf(t) by the FFT units 4.1
and 4.2. The signal Ho is then supplied to an
intensity-forming unit 4.3, thereby obtaining the
signal Ho

7 211~13
-
A reciprocal value l/Ff of the signal Sf formed in a
1 unit 4.4 is multiplied by the signal Ho in a
further multiplying member 4.5, thereby obtaining a
fourier-transformed reference function Hi of the ideal
filter. An inverse fourier transformation may then be
carried out by an IFFT unit 4.~ ~o that at the output
of the IFFT unit 4.6 the reference function hi(t) of
the ideal filter is obtained for pulse compression in
the time domain.
~ith the aid of the block diagram in ~ig. 5 a pulse
compression will be described corresponding to the
theory of the optim~m filter. This pulse compression
is carried out by means of a convolution unit 5.1, the
input signal Sf(t) applied and the reference function
hf(t) of the optimum filter applied, as well as the
compressed output signal ff(t) of the convolution unit
5.1, each containing phase and amplitude errors. If
the phase and amplitude e~rors of the input signal
Sf(t) are known, a correction function hçorr(t) can be
determined by means of which these errors can be
eliminated in accordance with ~he concept of the ideal
filter. An error-free pulse response fo(t) càn then be
obtained by a further convolution unit 5.2 in which the
signal ff(t) applied is convoluted with the correction
functiOn hCorr(t)-
The following relationship can be derived from a
comparison of Figs. 1 and 5:
hi(t) = hf(t) ~) hkorr( ) '

8 2 110218
where ~ is the convolution operator. It can be
1 seen from the above equation that the reference
function hi(t) of the ideal filter contains two terms.
The first term hf(t) ensures the compression of the
reception signal Sf(t) in accordance with the theory of
the optimum filter and the second term is hCorr(t)~ ah
additional correction term by which phase and amplitude
errors are eliminated.
Hereinafter, with reference to Figs. 6 and 7 two
embodiments will be described for implementing the
method of generating the correction functions hCorr(t).
In a generating unit 6.1 the reference function hf(t)
of the optimum filter is generated, the reference
function hf(t) being determined from the conjugate
complex and time-inverted replica Sf(t~ of the
transmitted signal. The reference function hi(t~ of
the ideal filter is generated as described above with
the aid of the block diagrams of Figs. 3 or 4 and in
Fig. 6 is combined i~ a generating unit 6.4. The
signals hf(t) and hi(t) are fourier-transformed by FFT
units 6.2 and 6.5 so that the spectra Hf and Hi are
obtained at the output of said FFT units. In a unit
6.3 forming a reciprocal value the reciprocal value
l/Hf of the fourier-transformed signal Hf is formed.
The reciprocal value 1/Hf is multiplied in a further
multiplying unit 6.6 by the output spectrum Hi of the
FFT unit 6.5 and consequently at the output of the
multiplying unit 6.6 the signal Hi/Hf = HCorr is
present which is inversely fourier-transformed by an
IFFT unit 6.7 to give the correction signal hCorr(t)~
If a convolution operation is carried out in the time
domain by means of a time correlation by ~he
convolution unit 5.2, the signal hCorr(t) is taken from
the output of the IFFT unit 6.7 and supplied to said
convolution unit 5.2, the phase and amplitude errors

9 211021~
then thereby being eliminated. If the convolution
1 operation by the convolution unit 5.2 is carried out in
the frequency domain, the signal hCorr is taken from
the output of the mutiplying member 6.6 fo~ a spectral
multiplication by the fourier-tranformed signal of the
compressed erroneous signal ff(t) at the output of the
convolution uni~ 5.5. After spectral multiplication of
the signal hCorr by Ff an IFFT operation is carried
out, the error-free pulse response fQ(t) then once
again being obtained.
It may happen in some cases that the replica sf(t) of
the transmitted signal is not available. With the aid
of Fig. 7 a method will therefore be described with
which the correction function hCorr is determined from
a selected point target response Zf(t) of the erroneous
compressed signal ff(t). The selected point target
response must have a pronounced backscattering to
ensure that the backscattering of the background can be
neglected compared with the backscattering of the point
target response. If this condition is not fulfilled
the phase and amplitude errors cannot be taken from the
selected point target response. Experience ~ith
practical data have shown that the peak value of the
selected point target response must be at least 25 dB
above the mean value of the background backscattering
to enable the influence of the background to be
neglected.
Selection of the point target response may be carried
out automatically by a simple search method by checking
the 25 dB suppression of the background in the vicinity
of pronounced ~oint target responses. Such a search
method is carried out in a unit 7.1 in Fig. 7, thus
giving at the output thereof a selected point target
response Zf(t~ and the mean background backscattering
Zm In a su~traction unit 7.2 the calculated mean
background back~c~ring Zm is subtracted from the

lO 211021~
-
backscattering of the selected point target response
1 Zf(t) so that at the output thereof the signal Zh(t) is
available (Zh = Zf ~ Zm) This subtraction gives a
more exact determination of the actual pulse response
with phase and amplitude errors.
The signal Zh(t) is fourier-transformed to the
frequency domain by an FFT unit 7.3 and the reciprocal
value l/Zh is formed by a reciprocal-forming unit 7.4.
The error-free pulse response fo(t) required for
determining the correction function hCorr(t) is
generated by convolution of the error-free replica
so(t) of the transmitted signal sf(t) in the unit 7.5.
The nominal parameters of the frequency modulation of
the transmitted signal Sf(t) are employed to determine
so(t) whilst the reference functions ho(t) are
determined from the conjugate complex and time-inverted
function of the replica fo~t)~ The pulse response
fo(t) is fourier-transformed to the frequency domain by
an FFT unit 7.6 so that the signal Fo is available at
the output of the FFT unit 7.6. ~he signal Fo/Zh
playing the part of the fourier transformation of the
correction function hCorr(t~ is then present at the
output of a multiplying member 7.7 in which the signal
Fo is multiplied by the reciprocal value 1/Zh
The point target response Zf(t) having a limited number
of points was used to generate the signal Fo/Zh at the
output of the multiplying member 7.7. Due to the
limited number of points irregularities occur with
regard to the selected data set Zftt) and lead in the
signal Fo/zh to interference components with higher
frequency components. To reduce these irregularities a
weighting function w(t) is generated ih a unit 7.8, for
example in the form of a Hamming weighting, the point
number of the weighting function w(t) being the same as
that of the FFT operation in the FFT units 7.3, 7.6 and
7.9. By the FFT unit 7.9 the weighting function w(t)

11 211021~
,_
is fourier-transformed to the weighting function W
1 which is available at the output of the FFT unit 7.9.
In a multiplying member 7.1 the product of the
weighting function W and the signal Fo/Zh is formed so
that at the output thereof the actual fourier
transformation hCorr = W . Fo/Zh of the correction
signal is formed. By a further IFFT unit 7.11 the
correction signal hCorr(t) is generated in the time
domain. For eliminating the phase and amplitude errors
the correction signal hCorr(t) is applied to the
convolution unit 5.2.

Dessin représentatif
Une figure unique qui représente un dessin illustrant l'invention.
États administratifs

2024-08-01 : Dans le cadre de la transition vers les Brevets de nouvelle génération (BNG), la base de données sur les brevets canadiens (BDBC) contient désormais un Historique d'événement plus détaillé, qui reproduit le Journal des événements de notre nouvelle solution interne.

Veuillez noter que les événements débutant par « Inactive : » se réfèrent à des événements qui ne sont plus utilisés dans notre nouvelle solution interne.

Pour une meilleure compréhension de l'état de la demande ou brevet qui figure sur cette page, la rubrique Mise en garde , et les descriptions de Brevet , Historique d'événement , Taxes périodiques et Historique des paiements devraient être consultées.

Historique d'événement

Description Date
Le délai pour l'annulation est expiré 2005-11-29
Lettre envoyée 2004-11-29
Accordé par délivrance 1998-11-24
Inactive : Taxe finale reçue 1998-07-08
Préoctroi 1998-07-08
Un avis d'acceptation est envoyé 1998-06-15
Un avis d'acceptation est envoyé 1998-06-15
Lettre envoyée 1998-06-15
Inactive : Renseign. sur l'état - Complets dès date d'ent. journ. 1998-06-09
Inactive : Dem. traitée sur TS dès date d'ent. journal 1998-06-09
Inactive : Approuvée aux fins d'acceptation (AFA) 1998-05-29
Demande publiée (accessible au public) 1994-05-31
Exigences pour une requête d'examen - jugée conforme 1993-11-29
Toutes les exigences pour l'examen - jugée conforme 1993-11-29

Historique d'abandonnement

Il n'y a pas d'historique d'abandonnement

Taxes périodiques

Le dernier paiement a été reçu le 1998-11-05

Avis : Si le paiement en totalité n'a pas été reçu au plus tard à la date indiquée, une taxe supplémentaire peut être imposée, soit une des taxes suivantes :

  • taxe de rétablissement ;
  • taxe pour paiement en souffrance ; ou
  • taxe additionnelle pour le renversement d'une péremption réputée.

Les taxes sur les brevets sont ajustées au 1er janvier de chaque année. Les montants ci-dessus sont les montants actuels s'ils sont reçus au plus tard le 31 décembre de l'année en cours.
Veuillez vous référer à la page web des taxes sur les brevets de l'OPIC pour voir tous les montants actuels des taxes.

Historique des taxes

Type de taxes Anniversaire Échéance Date payée
TM (demande, 4e anniv.) - générale 04 1997-12-01 1997-10-28
Taxe finale - générale 1998-07-08
TM (demande, 5e anniv.) - générale 05 1998-11-30 1998-11-05
TM (brevet, 6e anniv.) - générale 1999-11-29 1999-10-29
TM (brevet, 7e anniv.) - générale 2000-11-29 2000-10-23
TM (brevet, 8e anniv.) - générale 2001-11-29 2001-10-18
TM (brevet, 9e anniv.) - générale 2002-11-29 2002-10-18
TM (brevet, 10e anniv.) - générale 2003-12-01 2003-10-29
Titulaires au dossier

Les titulaires actuels et antérieures au dossier sont affichés en ordre alphabétique.

Titulaires actuels au dossier
DEUTSCHE FORSCHUNGSANSTALT FUR LUFT- UND RAUMFAHRT E.V.
Titulaires antérieures au dossier
ALBERTO MOREIRA
Les propriétaires antérieurs qui ne figurent pas dans la liste des « Propriétaires au dossier » apparaîtront dans d'autres documents au dossier.
Documents

Pour visionner les fichiers sélectionnés, entrer le code reCAPTCHA :



Pour visualiser une image, cliquer sur un lien dans la colonne description du document. Pour télécharger l'image (les images), cliquer l'une ou plusieurs cases à cocher dans la première colonne et ensuite cliquer sur le bouton "Télécharger sélection en format PDF (archive Zip)" ou le bouton "Télécharger sélection (en un fichier PDF fusionné)".

Liste des documents de brevet publiés et non publiés sur la BDBC .

Si vous avez des difficultés à accéder au contenu, veuillez communiquer avec le Centre de services à la clientèle au 1-866-997-1936, ou envoyer un courriel au Centre de service à la clientèle de l'OPIC.


Description du
Document 
Date
(aaaa-mm-jj) 
Nombre de pages   Taille de l'image (Ko) 
Dessins 1995-03-24 5 246
Description 1995-03-24 11 613
Description 1998-04-14 11 458
Revendications 1998-04-14 3 117
Revendications 1995-03-24 3 154
Abrégé 1995-03-24 1 38
Dessin représentatif 1998-08-26 1 12
Avis du commissaire - Demande jugée acceptable 1998-06-14 1 164
Avis concernant la taxe de maintien 2005-01-23 1 173
Correspondance 1998-07-07 1 51
Taxes 1998-11-04 1 54
Taxes 1997-10-27 1 57
Taxes 1998-11-04 1 54
Taxes 1995-11-20 1 45
Taxes 1996-11-25 1 42
Demande de l'examinateur 1997-09-22 2 50
Correspondance de la poursuite 1998-01-22 2 59
Correspondance reliée au PCT 1998-07-07 1 47
Correspondance de la poursuite 1997-05-29 2 80
Demande de l'examinateur 1997-01-30 2 74