Sélection de la langue

Search

Sommaire du brevet 2711735 

Énoncé de désistement de responsabilité concernant l'information provenant de tiers

Une partie des informations de ce site Web a été fournie par des sources externes. Le gouvernement du Canada n'assume aucune responsabilité concernant la précision, l'actualité ou la fiabilité des informations fournies par les sources externes. Les utilisateurs qui désirent employer cette information devraient consulter directement la source des informations. Le contenu fourni par les sources externes n'est pas assujetti aux exigences sur les langues officielles, la protection des renseignements personnels et l'accessibilité.

Disponibilité de l'Abrégé et des Revendications

L'apparition de différences dans le texte et l'image des Revendications et de l'Abrégé dépend du moment auquel le document est publié. Les textes des Revendications et de l'Abrégé sont affichés :

  • lorsque la demande peut être examinée par le public;
  • lorsque le brevet est émis (délivrance).
(12) Brevet: (11) CA 2711735
(54) Titre français: METHODE DE CONVERSION CONTINUE DE MATTE DE CUIVRE
(54) Titre anglais: METHOD OF CONTINUOUS CONVERSION OF COPPER MATTE
Statut: Périmé et au-delà du délai pour l’annulation
Données bibliographiques
(51) Classification internationale des brevets (CIB):
  • C22B 15/06 (2006.01)
(72) Inventeurs :
  • WARCZOK, ANDRZEJ (Chili)
  • RIVEROS URZUA, GABRIEL ANGEL (Chili)
  • MARIN ALVARADO, TANAI LERAC (Chili)
  • PONCE HERRERA, RICARDO (Chili)
  • BALOCCHI VENTURELLI, ARIEL (Chili)
  • SAEZ SOLIS, ROBERTO (Chili)
  • ROJAS VERAZAY, PATRICIO (Chili)
  • TAPIA LUNA, JOSE (Chili)
  • SMITH CRUZAT, DANIEL (Chili)
  • TAPIA SANCHEZ, ALBERTO ARTURO (Chili)
  • VARGAS DARUICH, IVAN ANDRES (Chili)
  • UTIGARD, TORSTEIN ARFINN (Canada)
(73) Titulaires :
  • UNIVERSIDAD DE CHILE
  • EMPRESA NACIONAL DE MINERIA
(71) Demandeurs :
  • UNIVERSIDAD DE CHILE (Chili)
  • EMPRESA NACIONAL DE MINERIA (Chili)
(74) Agent: BENOIT & COTE INC.
(74) Co-agent:
(45) Délivré: 2017-12-05
(86) Date de dépôt PCT: 2009-01-13
(87) Mise à la disponibilité du public: 2009-07-23
Requête d'examen: 2013-11-26
Licence disponible: S.O.
Cédé au domaine public: S.O.
(25) Langue des documents déposés: Anglais

Traité de coopération en matière de brevets (PCT): Oui
(86) Numéro de la demande PCT: PCT/IB2009/000039
(87) Numéro de publication internationale PCT: IB2009000039
(85) Entrée nationale: 2010-07-08

(30) Données de priorité de la demande:
Numéro de la demande Pays / territoire Date
116-2008 (Chili) 2008-01-15

Abrégés

Abrégé français

La práctica industrial de conversión de mata de cobre es la oxidación del sulfuro de hierro y posterior oxidación del sulfuro de cobre con formación de cobre blister, efectuada en convertidores Peirce-Smith u Hoboken en modo discontinuo. La presente invención resuelve dicha dificultad estableciendo continuidad operacional al proceso industrial. El método consiste en el uso de un flujo gravitacional continuo de mata de cobre a dos reactores conectados en serie por una canal, en donde la oxidación y escorifícación del hierro de la mata de cobre se efectúa en el primer reactor seguida por oxidación del sulfuro de cobre y formación de blister en el segundo reactor. Dicha operación intensiva de conversión de mata de cobre líquido ó liquido y sólido es continua utilizándose lechos empacados para incrementar la tasa de oxidación, en cada reactor, con menores tiempos de operación.


Abrégé anglais


The copper matte conversion industrial practice consists of the oxidation of
iron sulfur, and subsequent oxidation of copper with formation of blister
copper in Peirce-Smith or Hoboken converters, in a discontinued mode. This
invention solves said difficulty by providing continuity to the industrial
process. The method consists of the usage of a copper matte continuous
gravitational flow to two reactors connected in series by a channel, where
the oxidation and slagging of the iron contained in the copper matte takes
place in the first reactor, and is followed by the oxidation of copper sulfur
and formation of blisters in the second reactor. Said intensive conversion of
liquid or liquid and solid copper matte is continuous, as packed beds are
used for increasing the oxidation rate in each reactor in a reduced operating
time.

Revendications

Note : Les revendications sont présentées dans la langue officielle dans laquelle elles ont été soumises.


CLAIMS
1. A
continuous pyrometallurgical method for converting copper matte in two
reactors,
comprising the following successive stages:
a. continuous feeding of copper matte into a first oxidation reactor, which
has a
refractory chamber for containing said matte; wherein said refractory chamber
contains, a packed bed of ceramic grains or other chemically neutral grains
over which said matte disperse and gravitationally flows through said packed
bed;
b. simultaneous supply of gases containing air or oxygen-rich air through said
packed bed, in countercurrent to the matte, for oxidation of iron sulfur;
c. simultaneous supply of a flux of at least one of melted siliceous material,
limestone, clay or quartz, for slagging iron oxides and impurities, with
formation of either a conversion olivine-type slag (CaO-SiO2-FeO-Fe2O3),
when the flux is melted siliceous material and limestone, a calcium ferrite
slag
when the flux is limestone or an anorthite-type slag (CaAl2Si2O8) when the
flux is a mixture of limestone, clay and quartz, which gravitationally flows
through the packed bed;
d. continuous tapping of either the conversion olivine-type slag, the calcium
ferrite slag or the anorthite-type slag from a tapping hole, and copper sulfur
from a siphon block or inclined hole from the bottom of the first oxidation
reactor;
e. continuous feeding of copper sulfur to a second oxidation reactor, which
has a
refractory chamber for containing said copper sulfur, wherein said refractory
chamber contains a packed bed of ceramic grains or other chemically neutral
grains over which said copper sulfur disperses, liquefies and gravitationally
flows through said packed bed;
f. simultaneous supply of gases containing air or oxygen-rich air through said
packed bed, in countercurrent to the liquid copper sulfur, for oxidation of
the
copper sulfur, with formation of blister copper that flows gravitationally to
the
bottom of the second oxidation reactor;
g. continuous tapping of the blister copper from a tapping siphon block or
inclined
hole from the bottom of the second oxidation reactor; and
11

h. continuous evacuation of S02-rich gases from the iron sulfur oxidation and
the
blister copper formation to a sulfuric acid production plant.
2. Method as set forth in claim 1 wherein the copper matte in stage (a) is
loaded in solid
form over the surface of the packed-bed of the first reactor and melted with
the gases
flowing upwards through the bed.
3. Method set forth in claim 1 wherein the copper matte in stage (a) is
charged in liquid
form simultaneously with solid copper matte over the surface of the packed bed
of the
first reactor.
4. Method set forth in claim 1 wherein the oxygen content in the oxygen-
rich air in stage
(b) varies from 21% to 80% by volume, depending on the loss of heat of the
reactor,
grade of the matte and solid or liquid feeding to assure an autogenic process.
5. Method set forth in claim 1 wherein the flux supplied in stage (c), is
limestone such
that calcium ferrite slag is formed.
6. Method set forth in claim 1 wherein the flux added in stage (c) is a
mixture of
limestone, clay and quartz such that an anorthite-type slag (CaA17Si208) is
formed.
7. Method set forth in claim 1 wherein in stage (a) remainders of solid
copper and
returns of high-grade copper charged over the packed bed surface are melted by
the
countercurrent gases, and collected by the copper sulfur and slag.
8. Method set forth in claim 1 wherein the oxygen content in the oxygen-
rich air in stage
(f) varies from 21 % to 80 % by volume, depending on the loss of heat of the
reactor.
12

Description

Note : Les descriptions sont présentées dans la langue officielle dans laquelle elles ont été soumises.


CA 02711735 2010-07-08
METHOD OF CONTINUOUS CONVERSION OF COPPER MATTE
DESCRIPTIVE MEMORY
BACKGROUND
Smelting of copper concentrates produces matte and slag. Copper
matte is converted into blister copper in the Peirce-Smith or Hoboken
converters or, otherwise, in continuous conversion process such as the
Kennecott-Outokumpu, the Mitsubishi or the Noranda processes. Blister
copper is directed to fire refining process prior to the electro-refining.
The classic discontinuous conversion process of copper matte is
developed in a vascular furnace called Peirce-Smith converter or in a
vascular furnace with an off-gas siphon called Hoboken converter. The
classic process (batch) is discontinued and consists in two stages: iron
slagging and molding of blisters.
The first conversion stage aims at removing the FeS from the Cu2S-
FeS solution and the slagging of iron oxides by adding siliceous flux.
(FeS)matte 1,502+ Si02---4 (Fe2SiO4)siag 4- SO2
The Mitsubishi and Kennecott-Outokumpu continuous conversion
processes use limestone as flux, which forms calcium ferrite slag.
2(FeS)matte + 3,502 + (CaO Fe203)5la9 2S02
After removing the slag by blowing air or enriched air, it is conducted
to precipitation of metallic copper (blister copper).
(CU2S)matte + 02 --> 2(CU)blister + SO2
The classic conversion in a Peirce-Smith converter has the operational
flexibility of a typical discontinuous process, low energetic efficiency, high
labor requirements, and high emissions of sulfur dioxide and volatile
1

a = A.
CA 02711735 2010-07-08
impurities. The temperature fluctuation and the thermal impact shorten the
life of the refractory, especially in the tuyeres area.
The pyro-metallurgists' continuous conversion process idea
materialized in 1974 with the Mitsubishi process. Through it, high-grade
matte is continuously converted into blister copper through oxidation in
baths with enriched air injected through lances located in the ceiling of the
reactor. This is of a stationary vertical cylindrical type. Limestone is used
as
flux for iron slagging. The major problem faced by the Mitsubishi process is
the corrosion of the refractory due to the calcium ferrite slag with high
content of copper oxide. [(1) S. Okabe and E. Kimura, "Injection metallurgy
for continuous copper smelting and converting ¨ Fundamental aspects of
Mitsubishi process", The Howard Worner International Symposium on
Injection Metallurgy"; (2) M. Nilmani and T. Lehner, eds., TMS, 1996, 83-96.,
S.
Okabe and H. Sato, "Computer aided optimization of furnace design and
operating condition of Mitsubishi continuous copper converter, Sulfide
Smelting 98: Current and Future Practices, J.A. Asteljoki and R. L. Stephens,
eds., TMS, 1998, 607-618.; (3) H. Sato, F. Tanaka and S. Okabe, "Mechanism
of refractory wear by calcium ferrite slag", EPD Congress 1999, B. Mishra,
ed., TMS, 1999, 281-297.; (4) M. Goto and M. Hayashi, "The Mitsubishi
Continuous Process ¨ Metallurgical Commentary", Second Edition,
Mitsubishi Materials Corporation, June 2002.; (5) M. Goto and M. Hayashi,
"Recent advances in modern continuous converting", Yazawa International
Symposium, Metallurgical and Materials Processing; Principles and
Technologies, Vol. II ¨ High temperature metals production, F. Kongoli et al,
eds., TMS, 2003, 179-187.).
Outokumpu and Kennecott developed the continuous flash conversion
process. This process began to be industrially used in 1996 at the Kennecott
smelter. The process uses the Outokumpu flash furnace for oxidation of
high-grade powdered matte directly to blister copper. Limestone is used as
2

_ - -- -
CA 02711735 2010-07-08
flux agent, which produces a calcium ferrite slag with high copper oxide
content. The mayor advantage of the Kennecott-Outokumpu process is the
independence of the conversion process from the smelting of concentrates.
The energetic efficiency of the process is low due to the loss of heat by the
solidification of the matte, and the energy required for crushing and grinding
the matte. The major operational problem is the quick corrosion of the
refractory due to the calcium ferrite slag with a high content of copper
oxide,
and the generation of a large quantity of dust in the feeding duct, from 9% to
11%. [(1) D. B. George, R. J. Gottling and C. J. Newman, "Modernization of
Kennecott Utah copper smelter", COPPER 95 ¨ COPPER 95 International
Conference, Vol. IV ¨ Pyrometallurgy of Copper, W. J. (Pete) Chen et at.,
eds.,
The MetSoc of CIM, 1995, 41-52.; (2) C. J. Newman, D. N. Collins and A. J.
Weddick, "Recent operation and environmental control in the Kennecott Utah
copper smelter", Copper 99 ¨ Copper 99 International Conference, Vol. V ¨
Smelting Operations and Advances, D. B George et at, eds., TMS, 1999, 29-
45.; (3) C.J. Newman and M. M. Weaver, "Kennecott Flash Converting
Furnace design improvements ¨ 2-1", Sulfide Smelting 2002, R. L. Stephens
and H. Y. Sohn, eds. TMS, 2002, 317-328.; (4) D. B. George, "Continuous
copper Converting ¨ A perspective and view of the future", Sulfide Smelting
2002, R. L. Stephens and H. Y. Sohn, eds., TMS, 2002, 3-13.; (5) R. Walton, R.
Foster and D. George-Kennedy, "An update on flash converting at Kennecott
Utah Copper Corporation", 2005 TMS Annual Meeting. Converter and Fire
Refining Practices, A. Ross et al, eds.,TMS, 2005, 283-294.].
The other continuous conversion process was put into operation by
the Noranda company in 1997. The Noranda Continuous Conversion process
uses Noranda's reactor for continuous oxidation of the copper matte, by
maintaining three layers inside the reactor: one of semi-blister, one of white
metal and one of slag. Use of siliceous flux produces fayalite slag saturated
in magnetite. The process is not fully continuous. For obtaining blister
copper, final blowing must be performed the Peirce-Smith converter.
3

CA 02711735 2010-07-08
Refractory of reactor needs to be frequently repaired, particularly in the
tuyeres area. At present, the process is not in operation. [(1) P. J. Mackey,
C.
Harris and C. Levac, "Continuous converting of matte in the Noranda
Converter: Part I Overview and metallurgical background", COPPER 95 -
COPPER 95 International Conference, Vol. IV - Pyrometallurgy of Copper.
W.J. (Pete) Chen et al., eds., The MetSoc of CIM, 1995, 337-349.; (2) C. A.
Levac et al., "Design and construction of the Noranda Converter at the Home
Smelter", Sulfide Smelting 98, Current and Future Practices, J. A. Asteljoki
and R. L. Stephens, eds., TMS, 1998, 569-583.; (3) Y. Prevost, R. Lapointe, C.
A. Levac and D. Beaudoin, "First year of operation of the Noranda
continuous converter". Copper 99 - Copper 99 International Conference, Vol.
V - Smelting Operations and Advances, D. B. George et al, eds., TMS, 1999,
269-282,].
The Ausmelt continuous conversion process is still in the
development stage. The process takes place in the known vertical cylindrical
Ausmelt reactor with lances. Silica and limestone is used for slagging of iron
oxides, which produces an olivine-type slag. [(1) J. Sofra and R. Matusewics,
"Ausmelt technology - Flexible, low cost technology for copper production
in the 21st century", Yazawa International Symposium, Metallurgical and
Materials Processing: Principles and Technologies. Vol. II - High temperature
metals production, F. Kongoli et al, eds., TMS, 203, 211-226.; (2) J. Sofra
and
R. Matusewics, "Ausmelt technology - Copper production technology for the
21st. century". COPPER 2003 - COPPER 2003, Vol. IV - The Hermann -
Schwarze Symposium on Copper Pyrometallurgy. Book 1: Smelting
Operations, Ancillary Operations and Furnace Integrity, C. Diaz et al, eds.,
The MetSoc of CIM, 2003,157-172,].
4

CA 2711735 2017-03-21
BRIEF DESCRIPTION OF THE DRAWING
Figure 1 is a schematic diagram showing the side view, elevation and profile
of
the intensive pyrometallurgical method of continuous conversion of copper
matte in
two cascade packed-bed reactors.
DETAILED DESCRIPTION
This invention refers to a pyrometallurgical method for the continuous
conversion
of copper matte by using a flow of gravitational liquid matte in two reactors
installed in
series.
Accordingly, the present invention provides a continuous intensive
pyrometallurgical method for converting copper matte in two reactors,
comprising the
following successive stages:
a. continuous feeding of copper matte into a first oxidation reactor, which
has
a refractory chamber for containing said matte; wherein said refractory
chamber contains a packed bed of ceramic grains or other chemically
neutral grains over which said matte disperses and gravitationally flows
through said packed bed;
b. simultaneous supply of gases containing air or oxygen-rich air through
said
packed bed, in countercurrent to the liquid matte, for oxidation of iron
sulfur;
c. simultaneous supply of a flux of melted siliceous material, limestone or
a
mixture thereof for slagging iron oxides and impurities, with formation of a
conversion olivine-type slag (CaO-Si02-Fe0-Fe203), whiCh gravitationally
flows through the packed bed;

CA 02711735 2010-07-08
Slag formation:
Ca0 + Si02¨+ (CaSiO
3)slag
2(Fe0)s0lid Si02 (Fe2SiO4)slag
2(Fe304)solid (FeS)matte Si02 3(Fe2SiO4)slag 502
(Fe304)5011d Ca() ¨ (CaaFe203)slag FeO
Slag and white metal separation on bottom of the reactor;
Conversion slag continuous extraction through a tapping hole (1) and
white metal continuous extraction through a siphon or inclined hole;
Recycle of conversion slag to the melting furnace or to the slag-
cleaning furnace;
Continuous transfer of white metal (copper sulfur) through a channel
(7) to a second reactor of copper sulfide oxidation (9);
Dispersion and gravitational flow of white metal through a ceramic
grain packed bed;
Injection of air or oxygen-rich air through tuyeres (10);
Oxidation of white metal with molding of blister copper
(Cu2S)matte 4" 02 ---+ 2(CU)blister
Transfer of blister copper (11) through a channel to fire refining;
Evacuation of the off gases of the iron oxidation reactors (5) and of
copper mold (8) to the general system of gas cleaning of the smelter and to
the sulfuric acid plant;
6

- - -
CA 02711735 2010-07-08
The process' principle is schematically illustrated in Figure 1. The
copper matte (4) dispersed on the surface of the ceramic bed, flows
downwards in form of small drops and veins that get in contact with the
countercurrent flow of hot gas containing oxygen. An extremely high ratio of
liquid matte surface area (4) in relation to its volume results in a high rate
of
oxidation. Iron oxidation produces iron oxides that combine with the flux and
form the slag. The oxidation parameters, quantity of oxygen and temperature
can be precisely controlled by the flow of rich air blown through the tuyeres
(2). Similarly, the dispersion of the white metal (7) over the ceramic grain
packed bed of the second reactor increases the reaction surface area, which
in combination with the oxygen injected through the tuyeres (10) in
countercurrent to the liquid flow, results in a very high rate of copper
sulfide
oxidation, and forms blister copper. The temperature of the reactor can be
precisely controlled by the flow of injected air.
This invention has the following advantages as compared to the
traditional copper matte conversion methods:
Investment costs are significantly lower due to the small size of the
reactors required for the same production capacity;
Reduced labor requirements due to the totally continuous operation
mode;
Improved safety conditions for operators due to reduced work
exposed to high temperatures;
A more precise control of the process is achieved due to the reduced
inertia of the system. The grade of oxidation of the matte, and temperature of
7

CA 02711735 2010-07-08
the matte and slag can be precisely maintained within a narrow operating
range.
No liquid products need to be transported by crane, and no solid
products formation must be returned to the process;
The impurities removal ration is high due to the development of the
surface area, which allows obtaining blister copper of better quality.
Stationary condition of the reactors allows their easy pressurization,
and thereby fugitive emissions of sulfur dioxide and volatile impurities are
drastically reduced.
This invention has the following advantages as compared to the
copper matte continuous conversion existing methods:
Investment costs are significantly lower due to the small size of the
reactors required for the same production capacity;
Continuity of production can be assured with two parallel lines of
reactors, one in operation, the second in maintenance or on hold, thanks to
the low construction cost of the same;
Usage of MgO saturated olivine slag when using discard magnesite-
chrome bricks allows reducing corrosion of the reactor's refractory reactor.
The usage of tuyeres to inject oxygen-rich air directly into the porosity of
the
packed bed does not destroy the refractory in the tuyeres area;
A more precise control of the process is achieved due to the reduced
inertia of the system. The grade of oxidation of the matte, and temperature of
8

=
CA 02711735 2010-07-08
the matte and slag can be precisely maintained within a narrow operating
range.
EXAMPLE N 1
Copper matte with 73% - 75% of Cu continually flows through a
channel from the tapping hole of the Teniente Converter into the first
oxidation reactor (3) at a rate of 20 t/h. 3900 Nm3/h of air is blown and
injected through the tuyeres (2) inside the packed bed. Over it, 0.68 t/h of
quartz flux and 0.36 t/h of limestone flux are continuously charged. Off gases
containing 11% of SO2 and 5% of 02 are permanently transferred to the gas
cleaning system and to the acid plant. The slag (1) containing 6% of Cu, 40%
of Fe, 15% of CaO and 30% of Si02, is continuously tapped out at a rate of 2,4
t/h. White metal (7) flows from the siphon block at a rate of 18,3 t/h to a
channel of the second copper sulfide oxidation reactor (9). In the latter,
oxygen-rich air (24% of 02) is blown at 13,800 Nm3/h into the packed bed in
countercurrent to the white metal. Off gas (8), 17.470 Nm3/h, containing 17,3%
of SO2 and 5,2% of 02 is transferred to the gas cleaning system and to the
acid plant. The blister copper produced (11), containing 3000 ppm of 02 and
5000 ppm of S, flows through a channel of a siphon block to the copper fire-
refining furnace.
EXAMPLE N 2
Solid copper matte (73% - 75% of Cu) with a 20 ¨ 50 mm grain size is
fed over the packed bed surface of the oxidation reactor (3) at a rate of 20
t/h
together with the limestone flux (0,36 t/h) and siliceous flux (0,68 t/h) (6).
Oxygen-rich air (85% of 02) is blown at 2400 Nm3/h through the tuyeres to the
packed-bed. Off gases of this reactor (5) containing 80% of 02 and 4% of 02
are transferred to the gas cleaning system. Slag (1) containing 16% of Cu,
33% of Fe, 13% of CaO and 30% of Si02 is continuously extracted at a rate of
2,6 t/h. White metal and blister copper (7) flow at a rate of 16.1 t/h through
a
channel of the siphon block to a second reactor (9). In the latter, oxygen-
rich
9

. - -
CA 02711735 2010-07-08
air (24% of 02) is blown through the tuyeres (10) at 6750 Nm3/h into the
ceramic grain packed bed. Off gas (8), 8920 Nm3/h, containing 18,4% of SO2
and 5,3% of 02 is transferred to the gas cleaning system and to the acid
plant. Blister copper produced (11), containing 3000 ppm of 02 and 5000 ppm
of S, flows through a channel of the siphon block to the copper fire-refining
furnace.
=

Dessin représentatif
Une figure unique qui représente un dessin illustrant l'invention.
États administratifs

2024-08-01 : Dans le cadre de la transition vers les Brevets de nouvelle génération (BNG), la base de données sur les brevets canadiens (BDBC) contient désormais un Historique d'événement plus détaillé, qui reproduit le Journal des événements de notre nouvelle solution interne.

Veuillez noter que les événements débutant par « Inactive : » se réfèrent à des événements qui ne sont plus utilisés dans notre nouvelle solution interne.

Pour une meilleure compréhension de l'état de la demande ou brevet qui figure sur cette page, la rubrique Mise en garde , et les descriptions de Brevet , Historique d'événement , Taxes périodiques et Historique des paiements devraient être consultées.

Historique d'événement

Description Date
Le délai pour l'annulation est expiré 2023-07-13
Lettre envoyée 2023-01-13
Lettre envoyée 2022-07-13
Lettre envoyée 2022-01-13
Requête pour le changement d'adresse ou de mode de correspondance reçue 2020-11-18
Requête pour le changement d'adresse ou de mode de correspondance reçue 2020-05-25
Représentant commun nommé 2019-10-30
Représentant commun nommé 2019-10-30
Accordé par délivrance 2017-12-05
Inactive : Page couverture publiée 2017-12-04
Préoctroi 2017-10-20
Inactive : Taxe finale reçue 2017-10-20
Un avis d'acceptation est envoyé 2017-04-21
Lettre envoyée 2017-04-21
Un avis d'acceptation est envoyé 2017-04-21
Inactive : Approuvée aux fins d'acceptation (AFA) 2017-04-11
Inactive : QS réussi 2017-04-11
Modification reçue - modification volontaire 2017-03-21
Entrevue menée par l'examinateur 2017-03-09
Retirer de l'acceptation 2017-03-08
Inactive : Demande ad hoc documentée 2017-03-05
Inactive : Approuvée aux fins d'acceptation (AFA) 2017-03-03
Inactive : Q2 réussi 2017-03-03
Modification reçue - modification volontaire 2016-12-28
Inactive : Dem. de l'examinateur par.30(2) Règles 2016-07-22
Inactive : Rapport - Aucun CQ 2016-07-21
Modification reçue - modification volontaire 2016-06-02
Inactive : Dem. de l'examinateur par.30(2) Règles 2015-12-02
Inactive : Rapport - Aucun CQ 2015-11-30
Modification reçue - modification volontaire 2015-10-02
Inactive : Dem. de l'examinateur par.30(2) Règles 2015-04-02
Inactive : Rapport - CQ échoué - Majeur 2015-03-24
Lettre envoyée 2013-12-06
Requête visant le maintien en état reçue 2013-12-03
Requête d'examen reçue 2013-11-26
Exigences pour une requête d'examen - jugée conforme 2013-11-26
Toutes les exigences pour l'examen - jugée conforme 2013-11-26
Requête visant le maintien en état reçue 2012-11-09
Lettre envoyée 2011-08-23
Inactive : Transfert individuel 2011-07-28
Inactive : Supprimer l'abandon 2011-06-16
Inactive : Supprimer l'abandon 2011-06-13
Inactive : Abandon. - Aucune rép. à dem. art.37 Règles 2011-04-18
Réputée abandonnée - omission de répondre à un avis exigeant une traduction 2011-04-14
Inactive : Déclaration des droits - PCT 2011-04-07
Inactive : Demande sous art.37 Règles - PCT 2011-01-17
Inactive : Lettre pour demande PCT incomplète 2011-01-14
Inactive : Page couverture publiée 2010-10-08
Inactive : Lettre de courtoisie - PCT 2010-09-08
Inactive : Notice - Entrée phase nat. - Pas de RE 2010-09-08
Inactive : CIB en 1re position 2010-09-07
Inactive : CIB attribuée 2010-09-07
Demande reçue - PCT 2010-09-07
Exigences pour l'entrée dans la phase nationale - jugée conforme 2010-07-08
Demande publiée (accessible au public) 2009-07-23

Historique d'abandonnement

Date d'abandonnement Raison Date de rétablissement
2011-04-14

Taxes périodiques

Le dernier paiement a été reçu le 2016-12-13

Avis : Si le paiement en totalité n'a pas été reçu au plus tard à la date indiquée, une taxe supplémentaire peut être imposée, soit une des taxes suivantes :

  • taxe de rétablissement ;
  • taxe pour paiement en souffrance ; ou
  • taxe additionnelle pour le renversement d'une péremption réputée.

Les taxes sur les brevets sont ajustées au 1er janvier de chaque année. Les montants ci-dessus sont les montants actuels s'ils sont reçus au plus tard le 31 décembre de l'année en cours.
Veuillez vous référer à la page web des taxes sur les brevets de l'OPIC pour voir tous les montants actuels des taxes.

Historique des taxes

Type de taxes Anniversaire Échéance Date payée
TM (demande, 2e anniv.) - générale 02 2011-01-13 2010-07-08
Taxe nationale de base - générale 2010-07-08
Enregistrement d'un document 2011-07-28
TM (demande, 3e anniv.) - générale 03 2012-01-13 2011-11-22
TM (demande, 4e anniv.) - générale 04 2013-01-14 2012-11-09
Requête d'examen - générale 2013-11-26
TM (demande, 5e anniv.) - générale 05 2014-01-13 2013-12-03
TM (demande, 6e anniv.) - générale 06 2015-01-13 2015-01-12
TM (demande, 7e anniv.) - générale 07 2016-01-13 2015-12-18
TM (demande, 8e anniv.) - générale 08 2017-01-13 2016-12-13
Taxe finale - générale 2017-10-20
TM (brevet, 9e anniv.) - générale 2018-01-15 2017-12-13
TM (brevet, 10e anniv.) - générale 2019-01-14 2018-11-28
TM (brevet, 11e anniv.) - générale 2020-01-13 2019-11-11
TM (brevet, 12e anniv.) - générale 2021-01-13 2021-01-11
Titulaires au dossier

Les titulaires actuels et antérieures au dossier sont affichés en ordre alphabétique.

Titulaires actuels au dossier
UNIVERSIDAD DE CHILE
EMPRESA NACIONAL DE MINERIA
Titulaires antérieures au dossier
ALBERTO ARTURO TAPIA SANCHEZ
ANDRZEJ WARCZOK
ARIEL BALOCCHI VENTURELLI
DANIEL SMITH CRUZAT
GABRIEL ANGEL RIVEROS URZUA
IVAN ANDRES VARGAS DARUICH
JOSE TAPIA LUNA
PATRICIO ROJAS VERAZAY
RICARDO PONCE HERRERA
ROBERTO SAEZ SOLIS
TANAI LERAC MARIN ALVARADO
TORSTEIN ARFINN UTIGARD
Les propriétaires antérieurs qui ne figurent pas dans la liste des « Propriétaires au dossier » apparaîtront dans d'autres documents au dossier.
Documents

Pour visionner les fichiers sélectionnés, entrer le code reCAPTCHA :



Pour visualiser une image, cliquer sur un lien dans la colonne description du document. Pour télécharger l'image (les images), cliquer l'une ou plusieurs cases à cocher dans la première colonne et ensuite cliquer sur le bouton "Télécharger sélection en format PDF (archive Zip)" ou le bouton "Télécharger sélection (en un fichier PDF fusionné)".

Liste des documents de brevet publiés et non publiés sur la BDBC .

Si vous avez des difficultés à accéder au contenu, veuillez communiquer avec le Centre de services à la clientèle au 1-866-997-1936, ou envoyer un courriel au Centre de service à la clientèle de l'OPIC.


Description du
Document 
Date
(aaaa-mm-jj) 
Nombre de pages   Taille de l'image (Ko) 
Revendications 2010-07-07 3 100
Dessins 2010-07-07 1 26
Abrégé 2010-07-07 2 120
Dessin représentatif 2010-09-08 1 17
Description 2010-07-07 10 436
Abrégé 2010-07-07 1 26
Description 2015-10-01 10 432
Revendications 2015-10-01 3 74
Dessins 2015-10-01 1 20
Revendications 2016-06-01 2 71
Revendications 2016-12-27 2 77
Description 2017-03-20 10 400
Dessin représentatif 2017-11-14 1 13
Avis d'entree dans la phase nationale 2010-09-07 1 197
Courtoisie - Certificat d'enregistrement (document(s) connexe(s)) 2011-08-22 1 102
Rappel - requête d'examen 2013-09-15 1 118
Accusé de réception de la requête d'examen 2013-12-05 1 176
Avis du commissaire - Demande jugée acceptable 2017-04-20 1 162
Avis du commissaire - Non-paiement de la taxe pour le maintien en état des droits conférés par un brevet 2022-02-23 1 542
Courtoisie - Brevet réputé périmé 2022-08-09 1 537
Avis du commissaire - Non-paiement de la taxe pour le maintien en état des droits conférés par un brevet 2023-02-23 1 541
PCT 2010-07-07 15 535
Correspondance 2010-09-07 1 20
Correspondance 2011-01-16 1 23
Correspondance 2011-04-06 13 345
Taxes 2011-11-21 2 93
Taxes 2012-11-08 1 40
Taxes 2013-12-02 2 80
Modification / réponse à un rapport 2015-10-01 9 317
Demande de l'examinateur 2015-12-01 3 226
Modification / réponse à un rapport 2016-06-01 9 341
Demande de l'examinateur 2016-07-21 3 187
Modification / réponse à un rapport 2016-12-27 7 269
Note relative à une entrevue 2017-03-08 1 12
Modification / réponse à un rapport 2017-03-20 2 70
Taxe finale 2017-10-19 1 29