Sélection de la langue

Search

Sommaire du brevet 2771162 

Énoncé de désistement de responsabilité concernant l'information provenant de tiers

Une partie des informations de ce site Web a été fournie par des sources externes. Le gouvernement du Canada n'assume aucune responsabilité concernant la précision, l'actualité ou la fiabilité des informations fournies par les sources externes. Les utilisateurs qui désirent employer cette information devraient consulter directement la source des informations. Le contenu fourni par les sources externes n'est pas assujetti aux exigences sur les langues officielles, la protection des renseignements personnels et l'accessibilité.

Disponibilité de l'Abrégé et des Revendications

L'apparition de différences dans le texte et l'image des Revendications et de l'Abrégé dépend du moment auquel le document est publié. Les textes des Revendications et de l'Abrégé sont affichés :

  • lorsque la demande peut être examinée par le public;
  • lorsque le brevet est émis (délivrance).
(12) Brevet: (11) CA 2771162
(54) Titre français: PROCEDE DE FERMENTATION PRODUISANT UN ACIDE DICARBOXYLIQUE
(54) Titre anglais: DICARBOXYLIC ACID FERMENTATION PROCESS
Statut: Accordé et délivré
Données bibliographiques
(51) Classification internationale des brevets (CIB):
  • C12P 07/46 (2006.01)
  • C12N 01/16 (2006.01)
(72) Inventeurs :
  • JANSEN, MICKEL LEONARDUS AUGUST
  • VERWAAL, RENE
(73) Titulaires :
  • TECHNIP ENERGIES FRANCE S.A.S.
(71) Demandeurs :
  • TECHNIP ENERGIES FRANCE S.A.S. (France)
(74) Agent: SMART & BIGGAR LP
(74) Co-agent:
(45) Délivré: 2018-09-04
(86) Date de dépôt PCT: 2010-08-24
(87) Mise à la disponibilité du public: 2011-03-03
Requête d'examen: 2015-08-05
Licence disponible: S.O.
Cédé au domaine public: S.O.
(25) Langue des documents déposés: Anglais

Traité de coopération en matière de brevets (PCT): Oui
(86) Numéro de la demande PCT: PCT/EP2010/062345
(87) Numéro de publication internationale PCT: EP2010062345
(85) Entrée nationale: 2012-02-14

(30) Données de priorité de la demande:
Numéro de la demande Pays / territoire Date
09168858.0 (Office Européen des Brevets (OEB)) 2009-08-27
61/237,362 (Etats-Unis d'Amérique) 2009-08-27

Abrégés

Abrégé français

La présente invention porte sur un procédé pour la production d'un acide dicarboxylique, comprenant la fermentation d'une cellule fongique recombinée dans un milieu de fermentation approprié, en présence de concentrations élevées en dioxyde de carbone.


Abrégé anglais

The present invention relates to a process for producing a dicarboxylic acid, comprising fermenting a recombinant fungal cell in a suitable fermentation medium, in the presence of high carbon dioxide concentrations.

Revendications

Note : Les revendications sont présentées dans la langue officielle dans laquelle elles ont été soumises.


13
CLAIMS:
1. Process for producing a dicarboxylic acid selected from the group
consisting of
succinic acid, fumaric acid, and malic acid, said process comprising
fermenting a recombinant
yeast in a suitable fermentation medium, which comprises a carbon dioxide
concentration
ranging between 25 and 75 v/v% of total gas present in the fermentation medium
and
producing the dicarboxylic acid.
2. Process according to claim 1, wherein the fermenting is carried out
under
microaerophilic conditions.
3. Process according to claim 2, comprising supplying oxygen at an oxygen
uptake rate lower than 8.0 mmol oxygen/L/hour and above 0.01 mmol
oxygen/L/hour.
4. Process according to any one of claims 1 to 3, wherein the recombinant
yeast
overexpresses a gene encoding a phosphoenol pyruvate carboxykinase.
5. Process according to any one of claims 1 to 4, wherein the recombinant
yeast
comprises a disruption of a gene encoding an enzyme of the ethanol
fermentation pathway.
6. Process according to claim 5, wherein the enzyme is an alcohol
dehydrogenase.
7. Process according to any one of claims 1 to 6, wherein the recombinant
yeast
further overexpresses a gene encoding an enzyme selected from the group
consisting of a
malate dehydrogenase, a fumarase, a NAD(H)-dependent fumarate reductase, and a
dicarboxylic acid transporter protein.
8. Process according to any one of claims 1 to 7, wherein the recombinant
yeast
belongs to a Saccharomyces sp.

14
9. Process according to claim 8, wherein the recombinant yeast is
Saccharomyces
cerevisiae.
10. Process according to any one of claims 1 to 9, wherein the dicarboxylic
acid is
succinic acid.
11. Process according to any one of claims 1 to 9, wherein the dicarboxylic
acid is
fumaric acid.
12. Process according to any one of claims 1 to 9, wherein the dicarboxylic
acid is
malic acid.
13. Process according to any one of claims 1 to 12, wherein the
fermentation
medium has a p1I value of between 2 and 6.
14. Process according to any one of claims 1 to 13, further comprising
recovering
the dicarboxylic acid.
15. Process according to any one of claims 1 to 14, wherein the process is
carried
out on an industrial scale.
16. Process according to any one of claims 1 to 15, wherein the
dicarboxylic acid
is further converted into a pharmaceutical, cosmetic, food, feed or polyester
polymer.

Description

Note : Les descriptions sont présentées dans la langue officielle dans laquelle elles ont été soumises.


CA 02771162 2012-02-14
WO 2011/023700
PCT/EP2010/062345
DICARBOXYLIC ACID FERMENTATION PROCESS
FIELD OF THE INVENTION
The present invention relates to a process for the production of dicarboxylic
acids. In
particular, it relates to the production of dicarboxylic acids by fermentation
of yeast.
BACKGROUND OF THE INVENTION
Dicarboxylic acids, such as malic acid and succinic acid, are important
compounds which
are used in the food industry for the preparation and preservation of food, in
the medical
industry for the formulation of medical products and for other industrial
uses, such as
monomers for (bio) polymers. Dicarboxylic acids can be produced by
petrochemical
processes or fermentation based processes, by either bacteria or fungal cells.
Bacteria that have been studied for improved succinic acid production are for
example E.
cog, Mannheimia sp., Actinobacillus sp. or Corynebacteria. A disadvantage of
bacterial
dicarboxylic acid fermentation processes is that such processes need to be
carried out at
high pH and neutralizing agents are needed to maintain the pH at a desired
value. In
addition, neutral pH processes require sterile process conditions, increasing
the
production costs further.
In contrast to bacteria, fungal cells are able to grow at low pH values and do
not require
strictly sterile process conditions, making fungal cells an attractive
alternative for the
production of dicarboxylic acids.
In W02009/065780 recombinant fungal cells such as yeast and filamentous fungus
were
developed for the production of dicarboxylic acids, resulting in increased
production
levels of succinic acid and fumaric acid.
W02008/14462 shows that the addition of carbon dioxide of up to 10 v/v13/0
increased
production levels of malic acid and succinic acid by a recombinant yeast cell,
but higher
concentrations of carbon dioxide did not further increase dicarboxylic acid
production
levels.
Despite the improvements made with genetically modified fungal cells for
producing
dicarboxylic acids, there is a need for further improving dicarboxylic acid
production by
fungal cells.
SUMMARY OF THE INVENTION

CA 02771162 2017-01-30
70500-282
2
The present invention relates to a process for producing a dicarboxylic acid,
comprising
fermenting a recombinant fungal cell in a suitable fermentation medium, which
comprises a
carbon dioxide concentration ranging between 25 and 75 v/v% of total gas
present in the
fermentation medium and producing the dicarboxylic acid. Surprisingly, it was
found that the
yield of dicarboxylic acid (g/g sugar) in the process according to the present
invention was
increased significantly compared to a process comprising carbon dioxide
outside of the
concentration range of the invention.
Another advantage of the process according to the invention was that the
specific productivity
(g dicarboxylic acid / g sugar / h) was also increased significantly as
compared to a process
for the production of dicarboxylic acid comprising carbon dioxide outside of
the concentration
range of the invention.
In an embodiment, there is provided process for producing a dicarboxylic acid
comprising
fermenting a recombinant yeast in a suitable fermentation medium, wherein
carbon dioxide in
a concentration of 25 to 75 v/v% of total gas present in the fermentation
medium is used to
increase dicarboxylic acid production.
Definitions
The terms "dicarboxylic acid" and "dicarboxylate", such as "succinic acid" and
"succinate"
have the same meaning herein and are used interchangeably, the first being the
hydrogenated
form of the latter.
The term fermenting or fermentation as used herein refers to the microbial
production of
compounds such as alcohols or acids from carbohydrates.
A recombinant fungal cell according to the present invention is defined herein
as a cell which
contains a disruption of a gene or contains, or is transformed or genetically
modified with a
nucleotide sequence that does not naturally occur in the fungal cell, or it
contains additional
copy or copies of an endogenous nucleic acid sequence. A wild-type fungal cell
is herein
defined as the parental cell of the recombinant cell.
Disruption, or deletion or knock-out of a gene means that part of a gene or
the entire gene has
been removed from a cell, or a gene has been modified such that the gene is
not transcribed
into the original encoding protein.

CA 02771162 2017-01-30
70500-282
2a
The term "homologous" when used to indicate the relation between a given
(recombinant)
nucleic acid (DNA or RNA), gene or polypeptide molecule and a given host
organism or host
cell, is understood to mean that in nature the nucleic acid or polypeptide
molecule is produced
by a host cell or organisms of the same species, preferably of the same
variety or strain.
The term ''heterologous" when used with respect to a nucleic acid (DNA or RNA)
or protein
refers to a nucleic acid, gene or protein that does not occur naturally as
part of the organism,
cell, genome or DNA or RNA sequence in which it is present, or that is found
in a cell or
location or locations in the genome or DNA or RNA sequence that differ from
that in which it
is found in nature. Heterologous nucleic acids or proteins are not

CA 02771162 2012-02-14
WO 2011/023700 PCT/EP2010/062345
3
endogenous to the cell into which it is introduced, but have been obtained
from another
cell or synthetically or recombinantly produced.
Sequence identity is herein defined as a relationship between two or more
amino acid
(polypeptide or protein) sequences or two or more nucleic acid
(polynucleotide)
sequences, as determined by comparing the sequences. Usually, sequence
identities or
similarities are compared over the whole length of the sequences compared. In
the art,
"identity" also means the degree of sequence relatedness between amino acid or
nucleic
acid sequences, as the case may be, as determined by the match between strings
of
such sequences.
Preferred methods to determine identity are designed to give the largest match
between
the sequences tested. Methods to determine identity and similarity are
codified in publicly
available computer programs. Preferred computer program methods to determine
identity
and similarity between two sequences include BLASTP and BLASTN, publicly
available
from NCB! and other sources (BLAST Manual, Altschul, S., et al., NCB! NLM NIH
Bethesda, MD 20894). Preferred parameters for amino acid sequences comparison
using
BLASTP are gap open 11.0, gap extension 1, Blosum 62 matrix.
There are known methods in the art for overexpression of genes encoding
enzymes. A
gene encoding an enzyme may be overexpressed by increasing the copy number of
the
gene coding for the enzyme in the cell, e.g. by integrating additional copies
of the gene in
the cell's genome, by expressing the gene from a centromeric vector, from an
episomal
multicopy expression vector or by introducing an (episomal) expression vector
that
comprises multiple copies of one or more gene(s). Preferably, overexpression
of a gene
encoding an enzyme according to the invention is achieved with a (strong)
constitutive
promoter.
Suitable promoters in fungal cells are known to the skilled man in the art.
Suitable
promotors may be, but are not limited to, TDH1, TDH3, GAL?, GAL10, GAL1, CYC1,
HIS3, ADH1, PH05, ADC1, ACT1, TRP1, URA3, LEU2, EN01, TPI1, A0X1, PGL, GPDA
and GAPDH. Other suitable promoters include PDC1, GPD1, PGK1, and TEF1.
A gene encoding an enzyme may be ligated into a nucleic acid construct, for
instance a
plasmid, such as a low copy plasmid or a high copy plasmid. The fungal cell
according to
the present invention may comprise a single copy, but preferably comprises
multiple
copies of a gene, for instance by multiple copies of a nucleotide construct.
A nucleic acid construct may be maintained episomally and thus comprises a
sequence
for autonomous replication, such as an autonomously replicating sequence and a
centromere (Sikorski and Hieter ,1989, Genetics 122, 19-27). A suitable
episomal nucleic
acid construct may e.g. be based on the yeast 2p or pKD1 plasmids (Gleer et
al., 1991,
Biotechnology 9: 968-975), or the AMA plasmids (Fierro et al., 1995, Curr.
Genet.

CA 02771162 2012-02-14
WO 2011/023700 PCT/EP2010/062345
4
29:482-489). Alternatively, each nucleic acid construct may be integrated in
one or more
copies into the genome of the fungal cell. Integration into the cell's genome
may occur at
random by non-homologous recombination but preferably, the nucleic acid
construct may
be integrated into the cell's genome by homologous recombination as is well
known in
the art.
DETAILED DESCRIPTION OF THE INVENTION
In one embodiment the process for producing a dicarboxylic acid, comprising
fermenting
a recombinant fungal cell in a suitable fermentation medium comprises a carbon
dioxide
concentration ranging between 25 and 75 v/v%), for example between 35 and 65
v/V)/0, or
between 40 and 60 v/vc)/0 of total gas present in the fermentation medium.
The carbon dioxide present in the fermentation medium may be added to the
medium in
the form of gaseous carbon dioxide in a gas flow, for instance a gas flow
comprising
carbon dioxide at a concentration between 25 and 75 v/vc)/0. Suitable
concentrations of
carbon dioxide in a gas flow may range as described herein above.
The carbon dioxide may also be present in the fermentation medium by the
addition of
carbonate or bicarbonate salt, for instance calcium carbonate or calcium
bicarbonate.
Usually carbon dioxide is also formed during fermentation of a recombinant
fungal cell in
the process of the invention.
As used herein the term total gas in the fermentation medium comprises
dissolved and
not dissolved gas. Total gas in the fermentation medium comprises carbon
dioxide and
oxygen, and usually further comprises nitrogen and may comprise any gas
molecules
produced by fermenting the fungal cell, or added to the fermentation medium by
e.g.
sparging a gas flow through the fermentation medium.
It was found advantageous that total gas in the fermentation comprises oxygen,
providing
the recombinant fungal cell to generate energy via oxidation. Preferably, the
total gas
comprises low amounts of oxygen.
Preferably, the process as disclosed herein is carried out under aerobic
conditions,
preferably under microaerophilic conditions or oxygen limited conditions.
Microaerophilic
or oxygen limited conditions are reflected in the oxygen uptake rate (OUR).
For example,
the process described herein comprises supplying oxygen at an oxygen uptake
rate
lower than 8.0 mmol oxygen/L/hour and above 0.01 mmol oxygen/L/hour.
In one embodiment the OUR is lower than about 6.0 mmol oxygen/L/hour,
preferably
lower than about 5.0, 4.0, 3.0, or 2.0 mmol oxygen/L/hour, more preferably
lower than
about 1.0, or 0.5 mmol oxygen/L/hour, preferably above 0.01 mmol
oxygen/L/hour. It was
found that oxygen-limited conditions resulted in an increased yield of
dicarboxylic acid in
the process according to the present invention.

CA 02771162 2012-02-14
WO 2011/023700 PCT/EP2010/062345
In one embodiment the fermentation medium in the process disclosed herein
comprises a
carbon source, preferably a carbon source selected from the group consisting
of glucose,
fructose, galactose, xylose, arabinose, sucrose, lactose, maltose, raffinose
and glycerol.
The fermentation medium usually comprises a nitrogen source such as ammonium
or
5 ureum. The fermentation medium may comprise biotin.
In one embodiment in the process for producing a dicarboxylic acid of the
present
disclosure, a recombinant fungal cell overexpresses a gene encoding a
phosphoenol
pyruvate (PEP) carboxykinase. Any PEP- carboxykinase catalyzing the reaction
from
phospoenol pyruvate to oxaloacetate (4.1.1.49) may be suitable for
overexpression in a
fungal cell. A fungal cell may overexpress a heterologous PEP carboxykinase,
such as a
PEP carboxykinase derived from Escherichia coli, Mannheimia sp.,
Actinobacillus sp., or
Anaerobiospirillum sp., more preferably Mannheimia succiniciproducens,
Actinobacillus
succinogenes, or Anaerobiospirillum succiniciproducens. In one embodiment a
gene
overexpressing a PEP carboxykinase in a fungal cell in the process herein
disclosed is
expressed in the cytosol. In one embodiment a fungal cell of the present
disclosure
overexpresses a gene encoding a PEP-carboxykinase comprising an amino acid
sequence that has at least 70, 80, 90, 95, 97, 98, 99 or 100% sequence
identity with the
amino acid sequence of SEQ ID NO: 6.
It was found advantageous that a recombinant fungal cell overexpresses a PEP-
carboxykinase in the process for producing of a dicarboxylic acid in the
presence of 25 to
75 v/V3/0 carbon dioxide, since overexpression of PEP carboxykinase resulted
in an
increased fixation of carbon dioxide, i.e. the conversion of phosphoenol
pyruvate (03) to
oxaloacetate (C4), resulting in a higher yield of dicarboxylic acid.
In another embodiment in the process for producing a dicarboxylic acid of the
present
disclosure a recombinant fungal cell overexpresses a pyruvate carboxylase
(PYC), that
catalyses the reaction from pyruvate to oxaloacetate (EC 6.4.1.1). Preferably
the
pyruvate carboxylase is active in the cytosol upon expression of the gene.
Preferably, an
endogenous or homologous pyruvate carboxylase is overexpressed.
In another embodiment, a recombinant fungal cell in the process for producing
a
dicarboxylic acid disclosed herein comprises a disruption of a gene encoding
an enzyme
of the ethanol fermentation pathway. A gene encoding an enzyme of an ethanol
fermentation pathway, may be pyruvate decarboxylase (EC 4.1.1.1), catalyzing
the
reaction from pyruvate to acetaldehyde, or alcohol dehydrogenase (EC 1.1.1.1),
catalyzing the reaction from acetaldehyde to ethanol. Preferably, a fungal
cell in the
process as disclosed herein comprises a disruption of one, two or more genes
encoding
an alcohol dehydrogenase. In the event the fungal cell is a yeast, e.g.
Saccharomyces

CA 02771162 2012-02-14
WO 2011/023700 PCT/EP2010/062345
6
cerevisiae, the Saccharomyces cerevisiae preferably comprises a disruption of
an alcohol
dehydrogenase gene adhl and / or adh2.
The process for producing a dicarboxylic acid of the present disclosure was
found
particularly advantageous for cells comprising a disruption of a gene encoding
an
enzyme of the ethanol fermentation pathway. This resulted in an increase of
dicarboxylic
acid yield and at the same time cells lacking the ability to produce energy in
the form of
ATP by ethanol fermentation, were able to fulfill the requirement of ATP
formation via
oxidation.
In another embodiment, a fungal cell disclosed herein comprises a disruption
of a gene
encoding a glycerol-3-phosphate dehydrogenase. Disruption of a gene encoding a
glycerol-3-phosphate dehydrogenase usually results in a reduced formation of
glycerol. In
the event the fungal cell is a yeast, such as Saccharomyces cerevisiae, the
fungal cell
preferably comprises a disruption of a gpdl gene.
In one embodiment the recombinant fungal cell further overexpresses a gene
encoding
an enzyme selected from the group consisting of a malate dehydrogenase, a
fumarase, a
(NAD(H)-dependent fumarate reductase, and a dicarboxylic acid transporter
protein.
Preferred embodiments of these enzymes are as described herein below.
In one embodiment a fungal cell of the present disclosure further
overexpresses a gene
encoding a malate dehydrogenase (MDH) active in the cytosol upon expression of
the
gene. A cytosolic MDH may be any suitable homologous or heterologous malate
dehydrogenase, catalyzing the reaction from oxaloacetate to malate (EC
1.1.1.37).
Preferably a fungal cell comprises a gene encoding a malate dehydrogenase that
has at
least 70, 80, 90, 92, 94, 95, 96, 97, 98, 99 or 100% sequence identity with
the amino acid
sequence of SEQ ID NO: 9.
In another embodiment a fungal cell of the present disclosure further
overexpresses a
gene encoding a fumarase, that catalyses the reaction from malic acid to
fumaric acid
(EC 4.2.1.2). A gene encoding fumarase may be derived from any suitable
origin,
preferably from microbial origin, for instance a yeast such as Saccharomyces
or a
filamentous fungus, such Rhizopus olyzae. A fungal cell of the present
disclosure may
overexpress a nucleotide sequence encoding a fumarase that has at least 70%,
or, 80,
90, 92, 94, 95, 96, 97, 98, 99, 100% sequence identity with the amino acid
sequence of
SEQ ID NO: 8. In one embodiment the enzyme catalysing the conversion of malic
acid to
fumaric acid is active in the cytosol upon expression of the nucleotide
sequence. It was
found that cytosolic activity of fumarase resulted in a high productivity of a
dicarboxylic
acid by the fungal cell.
In another embodiment the fungal cell overexpresses any suitable heterologous
or
homologous gene encoding a NAD(H)-dependent fumarate reductase, catalyzing the

CA 02771162 2012-02-14
WO 2011/023700 PCT/EP2010/062345
7
reaction from fumarate to succinate (EC 1.3.1.6). The NADH-dependent fumarate
reductase may be a heterologous enzyme, which may be derived from any suitable
origin, for instance bacteria, fungi, protozoa or plants. A fungal cell of the
present
discolsure comprises a heterologous NAD(H)-dependent fumarate reductase,
preferably
derived from a Trypanosoma sp, for instance a Trypanosoma brucei. In one
embodiment
the NAD(H)-dependent fumarate reductase is expressed in the cytosol. The
fungal cell
may overexpress a gene encoding a NAD(H)-dependent fumarate reductase that has
at
least 70, 80, 90, 92, 94, 96, 98, or 100% sequence identity with SEQ ID NO:7.
In another embodiment the fungal cell overexpresses a gene encoding a
dicarboxylic
acid transporter protein, for instance a malic acid transporter protein (MAE).
A
dicarboxylic acid transporter protein may be a homologous or heterologous
protein. A
dicarboxylic acid transporter protein may be derived from any suitable
organism, for
instance from Schizosaccharomyces pombe. A fungal cell as disclosed herein may
comprise a dicarboxylic acid transporter protein which has at least 70, 80,
85, 90, 95, 99
or 100% sequence identity with SEQ ID NO: 10.
In one embodiment the fungal cell is a yeast or a filamentous fungus, for
instance
belonging to the genera Saccharomyces, Aspergillus, Penicillium, Pichia,
Kluyveromyces,
Yarrowia, Candida, Hansenula, Humicola, Issatchenkia, Torulaspora,
Trichosporon,
Brettanomyces, Rhizopus, Zygosaccharomyces, Pachysolen or Yamadazyma. The
fungal cell may for instance belong to a species Saccharomyces cervisiae,
Saccharomyces uvarum, Saccharomyces bayanus, Aspergillus niger, Penicillium
chrysogenum, Pichia stipidis, Kluyveromyces marxianus, K. lactis, K.
thermotolerans,
Yarrowia lipolytica, Candida sonorensis, C. glabrata, Hansenula polymorpha,
lssatchenkia orientalis, Torulaspora delbrueckii, Brettanomyces bruxellensis,
Rhizopus
oryzae or Zygosaccharomyces bailii. In one embodiment the fungal cell is a
yeast, for
instance belonging to a Saccharomyces sp., preferably a Saccharomyces
cerevisiae.
Any suitable dicarboxylic acid may be produced in the process as described
herein, for
instance succinic acid, fumaric acid or malic acid, for instance succinic
acid.
The process for the production of a dicarboxylic acid of the present
disclosure may be
carried out at any suitable pH between 1 and 8. The pH in the fermentation
broth may be
between 2 and 7, preferably between 3 and 5.
A suitable temperature at which the process of the present disclosure be
carried out is
between 5 and 60 C, or between 10 and 50 C, for instance between 15 and 45 C,
or
between 20 C and 40 C. The skilled man in the art knows the optimal
temperatures for
fermenting a specific fungal cell.

CA 02771162 2012-02-14
WO 2011/023700 PCT/EP2010/062345
8
In another embodiment the process comprises recovering the dicarboxylic acid
from the
fermentation medium by a suitable method known in the art, for instance by
crystallisation, ammonium precipitation or ion exchange technology.
In one embodiment, the dicarboxylic acid that is prepared in the process
according to the
present invention is further converted into a pharmaceutical, cosmetic, food,
feed, or
polyester polymer. Succinic acid may for instance be further converted into a
polymer,
such as polybutylene succinate (PBS).
In another embodiment the process according to present invention is carried
out on an
industrial scale. Industrial is herein defined as a fermentation process that
is carried out
in a volume of at least 10 liters, preferably at least 100 liters, preferably
at least 1 cubic
metre (m3), more preferably at least 10, 100, or 1000 cubic metres (m3),
usually below
10,000 cubic metres (m3).
The invention also relates to a process for producing a dicarboxylic acid
comprising
fermenting a recombinant fungal cell in a suitable fermentation medium,
wherein carbon
dioxide in a concentration of 20 to 80 v/v% of total gas present in the
fermentation
medium is used to increase dicarboxylic acid production.
FIGURES
Figure 1. Effect of the CO2 concentration (v/v%) on the dicarboxylic acid
yield (Yps) after
90 h fermentation of yeast SUC-200 at pH 5. Closed square: Yield of succinic
acid (Yps
SA); Open square: Yield of succinic acid + malic acid (YpssA+mA).
Figure 2. Effect of the CO2 concentration (v/v%) on the specific dicarboxylic
acid
productivity (qp) after 90 h fermentation of yeast SUC-200 at pH 5. Closed
square:
Productivity of succinic acid (qpsA); Open square: Productivity of succinic
acid + malic
acid (qpsA mA).
EXAMPLES
Example 1. Dicarboxylic acid production by Saccharomyces cerevisiae
1.1. Construction yeast strain
1.1.1. Construction of expression constructs
Expression construct pGBS414PPK-3 was created after a BamHI1Notl restriction
of the
S. cerevisiae expression vector pRS414 (Sirkoski R.S. and Hieter P, Genetics,
1989,
122(1):19-27) and subsequently ligating in this vector a BamHI/Notl
restriction fragment

CA 02771162 2012-02-14
WO 2011/023700 PCT/EP2010/062345
9
consisting of the phosphoenolpyruvate carboxykinase (origin Actinobacillus
succinogenes) synthetic gene construct (SEQ ID NO: 1). The ligation mix was
used for
transformation of E. coli TOP10 (Invitrogen) resulting in the yeast expression
construct
pGBS414PPK-1. Subsequently, pGBK414PPK-1 was restricted with Ascl and Not!. To
create pGBS414PPK-3, an Ascl/Notl restriction fragment consisting of
glycosomal
fumarate reductase from T. brucei (FRDg) synthetic gene construct (SEQ ID NO:
2) was
ligated into the restricted pGBS414PPK-1 vector. The ligation mix was used for
transformation of E. coli TOP10 (Invitrogen) resulting in the yeast expression
construct
pGBS414P PK-3.
The expression construct pGBS415FUM-3 was created after a Bam1-111Notl
restriction of
the S. cerevisiae expression vector pRS415 (Sirkoski R.S. and Hieter P,
Genetics, 1989,
122(1):19-27) and subsequently ligating in this vector a BamHI/Notl
restriction fragment
consisting of the fumarase (origin Rhizopus oryzae) synthetic gene construct
(SEQ ID
NO: 3). The ligation mix was used for transformation of E. coli TOP10
(Invitrogen)
resulting in the yeast expression construct pGBS415FUM-1. Subsequently,
pGBK415FUM-1 was restricted with Ascl and Not!. To create pGBS415FUM-3, an
Ascl/Notl restriction fragment consisting of peroxisomal malate dehydrogenase
from S.
cerevisiae (MDH3) synthetic gene construct (SEQ ID NO: 4) was ligated into the
restricted pGBS415FUM-1 vector. The ligation mix was used for transformation
of E. coli
TOP10 (Invitrogen) resulting in the yeast expression construct pGBS415FUM-3.
The expression construct pGBS416MAE-1 was created after a BamHI/Notl
restriction of
the S. cerevisiae expression vector pRS416 (Sirkoski R.S. and Hieter P,
Genetics, 1989,
122(1):19-27) and subsequently ligating in this vector a BamHI/Notl
restriction fragment
consisting of the Schizosaccharomyces pombe malate transporter synthetic gene
construct (SEQ ID NO: 5). The ligation mix was used for transformation of E.
coil TOP10
(Invitrogen) resulting in the yeast expression construct pGBS416MAE-1.
1.1.2. Construction S. cerevisiae strain
Plasmids pGBS414PPK-3, pGBS415FUM-3 and pGBS416MAE-1 (described under
1.1.1) were transformed by electroporation into S. cerevisiae strain RWB064
(MATA
ura3-52 leu2-112 trp1-289 adhl::lox adh2::lox gpd1::Kanlox) to create strain
SUC-200,
overexpressing PCKa, MDH3, FUMR, FRDg and SpMAE1. All genes were codon pair
optimized for expression in S. cerevisiae according to W02008/000632.
1.2. Dicarboxylic acid fermentation
1.2.1. Fermentation conditions

CA 02771162 2012-02-14
WO 2011/023700
PCT/EP2010/062345
The yeast strain SUC-200 as described under paragraph 1.1. was cultivated in
shake-
flask (2 x 300 ml) for 3 days at 30 C and 220 rpm. The medium was based on
Verduyn
(Verduyn et. al., 1992, Yeast 8, 501-517), but modifications in carbon and
nitrogen
source were made as shown in Table 1 and 2.
5
Table 1. Preculture shake flask medium composition.
Raw material Formula Concentration (g/l)
C6H1206 =
Galactose 20.0
H20
Urea (NH2)2C0 2.3
Potassium dihydrogen
KH2PO4 3.0
phosphate
MgSO4 .
Magnesium sulphate 0.5
7H20
Trace element solutiona 1
Vitamin solutionb 1
aVitamin solution
Concentration
Component Formula
(g/kg)
Biotin (D-) C10H16N203S 0.05
Ca D(+) panthothenate C18H32CaN2010 1.00
Nicotinic acid C6H5NO2 1.00
Myo-inositol C6H1206 25.00
Thiamine chloride C12H18C12N40S . 1.00
hydrochloride xH20
Pyridoxol hydrochloride C8H12C1NO3 1.00
p-aminobenzoic acid C7H7NO2 0.20
10 bTrace elements solution

CA 02771162 2012-02-14
WO 2011/023700 PCT/EP2010/062345
11
bncentraticj
Component
ori-ri LI 14]
]!; (g/kg)
EDTA Cioldt4N2Na208 = 15.00
2H20
Zincsulphate . 7H20 ZnSO4.7H20 4.50
Manganesechloride MnCl2 . 2H20 0.84
2H20
Cobalt (II) chloride. CoCl2 . 6H20 0.30
6H20
Cupper (II) sulphate. CuSO4. 5H20 0.30
5H20
Sodium molybdenum . Na2Mo04. 2H20 0.40
2H20
Calciumchloride . 2H20 CaCl2. 2H20 4.50
lronsulphate . 7H20 FeSO4.7H20 3.00
Boric acid H3B03 1.00
Potassium iodide KI 0.10
Subsequently, the contents of the shake-flasks were transferred to a 10L
fermenter
(Startweight 6 kg), which contained the following medium:
Table 2. Main fermentation medium composition.
Raw material Concentration (g/l)
Ammonium sulphate (NH4)2SO4 2.5
Potassium dihydrogen
KH2PO4 3.0
phosphate
Magnesium sulphate MgSO4. 7H20 0.5
Trace element solution 1
Vitamin solution 1
The pH during the fermentation was controlled at 5.0 by addition of 6 N KOH.
The
temperature was controlled at 30 C. Glucose concentration was kept limited (<
1 g/I) by
controlled feed to the fermenter. Oxygen uptake rate (OUR) was controlled at 5
mmol/kg/h during the fermentation, which resulted in oxygen limitation. A
total gasflow of
0.33 vvm was applied, with varying percentages of CO2 in the gas mixture.
During the cultivation of 90 hours growth occurred to a typical biomass
concentration of 8
g/L.
1.2.2. NMR analyses
Dicarboxylic acid concentrations in the fermentation supernatant were
determined by
means of NMR spectroscopy.
3 ml broth was centrifuged for 10 min at 4500 x g. Approximately 500
microlitres of
supernatant were accurately weighed to a head space vial. To each sample 0.5
ml of pen

CA 02771162 2012-02-14
12
buffer C-2696 (containing 5.62 mg/ml maleic acid) was added. The samples were
capped
and cooked for about 10 minutes in a water bath (and in oil bath in the
control sample
CF292706-11 and CF292706-12) at 100 C. The samples were lyophilized, the
residue
was dissolved in 1 ml D20.
The spectra were recorded at a proton frequency of Bruker DRX 360 MHz at a
probe
temperature of 300 K. The quantitative measurements were performed with pulse
program zg, excitation pulse from 30 - 90 degrees and a relaxation delay of
40s.
Figure 1 shows that a CO2 concentration increasing to about 50 v/v% resulted
in an
increased yield Yp. (g/g) of succinic acid and increased yield of malic acid
(MA) plus
succinic acid (SA) of about 10 to 30% as compared to a CO2 concentration of 10
v/v%.
An overall yield of SA + MA of 0.49 g/g was achieved when applying 50 v/vc/c,
CO2,
whereas 10 viv% CO2 resulted in a yield of 0.36 g/g SA + MA. The yield of SA
+MA
without the addition of 002 during the fermentation was 0.23 g/g.
Likewise the specific productivity qp (g/g/h) increased at higher CO2
concentrations
(Figure 2). A concentration of 50 v/v /0 CO2 resulted in an increased specific
productivity
of SA + MA (qpsAtmA) of 0.047 g/g/h compared to 0.039 g/g/h using 10 v/v /0
002.
Conclusion
The results show that carbon dioxide concentrations of between 25 and 76
v/V3/0 had a
positive effect on the yield and specific productivity of a dicarboxylic acid
(succinic acid
and malic acid) by a recombinant fungal cell, such as a recombinant
Saccharomyces
cerevisiae.
SEQUENCE LISTING IN ELECTRONIC FORM
In accordance with Section 111(1) of the Patent Rules, this
description contains a sequence listing in electronic form in ASCII
text format (file: 52215-113 Seq 01-FEB-12 vl.txt).
A copy of the sequence listing in electronic form is available from
the Canadian Intellectual Property Office.
The sequences in the sequence listing in electronic form are
reproduced in the following table.

CA 02771162 2012-02-14
12a
SEQUENCE TABLE
<110> DSM IP Assets B.V.
Jansen, Mickel
Verwaal, Rene
<120> Dicarboxylic acid fermentation process
<130> 52215-113
<140> CA national phase of PCT/EP2010/062345
<141> 2010-08-24
<150> US 61/237,362
<151> 2009-08-27
<150> EP 09168858.0
<151> 2009-08-27
<160> 10
<170> PatentIn version 3.5
<210> 1
<211> 3148
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic construct TDH1p-PCKa-TDH1t for expression in S.
cerevisiae
<400> 1
ggatcccttc ccttttacag tgcttcggaa aagcacagcg ttgtccaagg gaacaatttt 60
tcttcaagtt aatgcataag aaatatcttt ttttatgttt agctaagtaa aagcagcttg 120
gagtaaaaaa aaaaatgagt aaatttctcg atggattagt ttctcacagg taacataaca 180
aaaaccaaga aaagcccgct tctgaaaact acagttgact tgtatgctaa agggccagac 240
taatgggagg agaaaaagaa acgaatgtat atgctcattt acactctata tcaccatatg 300
gaggataagt tgggctgagc ttctgatcca atttattcta tccattagtt gctgatatgt 360
cccaccagcc aacacttgat agtatctact cgccattcac ttccagcagc gccagtaggg 420
ttgttgagct tagtaaaaat gtgogoacca caagcctaca tgactccacg tcacatgaaa 480
ccacaccgtg gggccttgtt gcgctaggaa taggatatgc gacgaagacg ottotgotta 540
gtaaccacac cacattttca gggggtcgat ctgottgott cctttactgt cacgagcggc 600
ccataatcqc gctttttttt taaaaggcgc gagacagcaa acaggaagct cgggtttcaa 660
ccttcggagt ggtcgcagat ctggagactg gatctttaca atacagtaag gcaagccacc 720
atctgcttct taggtgcatg cgacggtatc cacgtgcaga acaacatagt ctgaagaagg 780
gggggaggag catgttcatt ctctgtagca gtaagagctt ggtgataatg accaaaactg 840
gagtctcgaa atcatataaa tagacaatat attttcacac aatgagattt gtagtacagt 900
tctattctct ctcttgcata aataagaaat tcatcaagaa cttggtttga tatttcacca 960
acacacacaa aaaacagtac ttcactaaat ttacacacaa aacaaaatga ccgatttgaa 1020
ccaattgact caagaattgg gtgctttggg tattcacgat gtccaagaag ttgtctacaa 1080
cccatcttac gaattgttgt ttgctgaaga aaccaagcca ggtttggaag gttacgaaaa 1140
gggtactgtt accaaccaag gtgctgttgc tgtcaacacc ggtatcttca ccggtcgttc 1200
tccaaaggac aaatacattg tcttggatga caagaccaag gacactgtct ggtggacttc 1260

CA 02771162 2012-02-14
12b
tgaaaaggtc aagaacgaca acaaaccaat gtcccaagac acttggaact ctttaaaggg 1320
tttagtcgct gaccaattgt ctggtaagag attattcgtt qtcgatgctt totgtggtqc 1380
caacaaggac accagattag ctgtcagagt tgtcactgaa gttgcttggc aagctcactt 1440
cgttaccaac atgttcatca gaccatctgc tgaagaattg aaaggtttca agccagattt 1500
cgttgtcatg aacggtgcca aatgtaccaa cccaaactgg aaggaacaag gtttgaactc 1560
tgaaaacttt gttgctttca acatcactga aggtgttcaa ttgattggtg gtacctggta 1620
cggtggtgaa atgaagaagg gtatgttctc catgatgaac tacttcttgc cattgagagg 1680
tattgcttcc atgcactgtt ctgccaatgt cggtaaggac ggtgacactg ccatcttctt 1740
cggtctatcc ggtaccggta agaccacttt gtccactgac ccaaagagac aattgattgg 1800
tgatgacgaa cacggttggg atgacgaagg tgttttcaac tttgaaggtg gttgttacgc 1860
caagaccatc aacttatctg ctgaaaatga accagatatc tacggtgcca tcaagcgtga 1920
cgctctattg gaaaacgttg ttgttttgga caatggtgac gtcgattatg ctgacggttc 1980
caagactgaa aacaccagag tttcttaccc aatctaccat attcaaaaca ttgtcaagcc 2040
agtttccaag gctggtccag ctaccaaagt tatcttcttg tctgctgatg ctttcgqtgt 2100
tttgcctcct gtttccaagt tgactccaga acaaaccaag tactacttct tgtctggttt 2160
caccgccaag ttggctggta ctgaaagagg tatcactgaa ccaactccaa ctttctctgc 2220
ttgtttcggt gctgcctttt tgtctttgca cccaactcaa tacgctgaag ttttggtcaa 2280
gagaatgcaa gaatctggtg ctgaagctta cttggtcaac actggttgga acggtaccgg 2340
taagagaatc tccatcaaag ataccagagg tatcatcgat gccatcttgg atggttccat 2400
tgacaaggct gaaatgggtt ctttgccaat tttcgatttc tccattccaa aggctttgcc 2460
aggtgtcaac ccagccatct tagacccaag agacacctac gctgacaaag ctcaatggga 2520
agaaaaggct caagacttgg ctggtagatt cgtcaagaac ttcgaaaaat acactggtac 2580
tgctgaaggt caagctttgg ttgctgctgg tccaaaggcc taaggcccgg gcataaagca 2640
atcttgatga ggataatgat ttttttttga atatacataa atactaccgt ttttctgcta 2700
gattttgtga agacgtaaat aagtacatat tactttttaa gccaagacaa gattaagcat 2760
taactttacc cttttctctt ctaagtttca atactagtta tcactgttta aaagttatgg 2820
cgagaacgtc ggcggttaaa atatattacc ctgaacgtgg tgaattqaag ttctaggatg 2880
gtttaaagat ttttcctttt tgggaaataa gtaaacaata tattgctgcc tttgcaaaac 2940
gcacataccc acaatatgtg actattggca aagaacgcat tatcctttga agaggtggat 3000
actgatacta agagagtctc tattccggct ccacttttag tccagagatt acttgtcttc 3060
ttacgtatca gaacaagaaa gcatttccaa agtaattgca tttgcccttg agcagtatat 3120
atatactaag aaggcgcgcc gcggccgc 3148
<210> 2
<211> 4959
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic construct TDH3p-FRDg-TDH3t for expression in S.
cerevisiae
<400> 2
ggatccggcg cgccctattt tcgaggacct tgtcaccttg agcccaagag agccaagatt 60
taaattttcc tatgacttga tgcaaattcc caaagctaat aacatgcaag acacgtacgg 120
tcaagaagac atatttgacc tcttaacagg ttcagacgcg actgcctcat cagtaagacc 180
cgttgaaaag aacttacctg aaaaaaacga atatatacta gcgttgaatg ttagcgtcaa 240
caacaagaag tttaatgacg cggaggccaa ggcaaaaaga ttccttgatt acgtaaggga 300
gttagaatca ttttgaataa aaaacacgct ttttcagttc gagtttatca ttatcaatac 360
tgccatttca aagaatacgt aaataattaa tagtagtgat tttcctaact ttatttagtc 420
aaaaaattag ccttttaatt ctgctgtaac ccgtacatgc ccaaaatagg gggcgggtta 480
cacagaatat ataacatcgt aggtgtatgg gtgaacagtt tattcctggc atccactaaa 540
tataatggag cccgcttttt aagctggcat ccagaaaaaa aaagaatccc agcaccaaaa 600
tattgttttc ttcaccaacc atcagttcat aggtccattc tcttagcgca actacagaga 660
acaggggcac aaacaggcaa aaaacgggca caacctcaat ggagtgatgc aacctgcctg 720

CA 02771162 2012-02-14
12c
gagtaaatga tgacacaagg caattgaccc acgcatgtat ctatctcatt ttcttacacc 780
ttctattacc ttctgctctc tctgatttgg aaaaagctga aaaaaaaggt tgaaaccagt 840
tccctgaaat tattccccta cttgactaat aagtatataa agacggtagg tattgattgt 900
aattctgtaa atctatttct taaacttctt aaattctact tttatagtta gtcttttttt 960
tagttttaaa acaccaagaa cttagtttcg aataaacaca cataaacaaa caaaatggtt 1020
gatggtagat cttctgcttc cattgttgcc gttgacccag aaagagctqc cagagaaaga 1080
qatgctgctg ccagagcttt gttgcaagac tctccattgc acaccaccat gcaatacgct 1140
acctctggtt tggaattgac tgttccatac gctttgaagg ttgttgcttc tgctgacact 1200
ttcgacagag ccaaggaagt tgctgatgaa gtcttgagat gtgcctggca attggctgac 1260
accgttttga actctttcaa cccaaactct gaagtctctt tagtcggtag attaccagtc 1320
ggtcaaaagc atcaaatgtc tgctccattg aaacgtgtca tggcttgttg tcaaagagtc 1380
tacaactcct ctgctggttg tttcgaccca tccactgctc cagttgccaa ggctttgaga 1440
gaaattgctt tgggtaagga aagaaacaat gcttgtttgg aagctttgac tcaagcttgt 1500
accttgccaa actctttcgt cattgatttc gaagctggta ctatctccag aaagcacgaa 1560
cacgcttctt tggatttggg tggtgtttcc aagggttaca tcgtcgatta cgtcattgac 1620
aacatcaatg ctgctggttt ccaaaacgtt ttctttgact ggggtggtga ctgtcgtgcc 1680
tccggtatga acgccagaaa cactccatgg gttgtcggta tcactagacc tocttccttg 1740
gacatgttgc caaaccctcc aaaggaagct tcttacatct ccgtcatctc tttggacaat 1800
gaagctttgg ctacctctgg tgattacgaa aacttgatct acactgctga cgataaacca 1860
ttgacctgta cctacgattg gaaaggtaag gaattgatga agccatctca atccaatatc 1920
gctcaagttt ccgtcaagtg ttactctgcc atgtacgctg acgctttggc taccgcttgt 1980
ttcatcaagc gtgacccagc caaggtcaga caattgttgg atggttggag atacgttaga 2040
gacaccgtca gagattaccg tgtctacgtc agagaaaacg aaagagttgc caagatgttc 2100
gaaattgcca ctgaagatgc tgaaatgaga aagagaagaa tttccaacac tttaccagct 2160
cgtgtcattg ttgttggtgg tggtttggct ggtttgtccg ctgccattga agctgctggt 2220
tgtggtgctc aagttgtttt gatggaaaag gaagccaagt tgggtggtaa ctctgccaag 2280
gctacctctg gtatcaacgg ttggggtact agagctcaag ctaaggcttc cattgtcgat 2340
ggtggtaagt acttcgaaag agatacctac aagtctqqta tcggtggtaa caccgatcca 2400
gctttggtta agactttgtc catgaaatct gctgacgcta tcggttggtt gacttctcta 2460
ggtgttccat tgactgtttt gtcccaatta ggtggtcact ccagaaagag aactcacaga 2520
gctccagaca agaaggatgg tactccattg ccaattggtt tcaccatcat gaaaacttta 2580
gaagatcatg ttagaggtaa cttgtccggt agaatcacca tcatggaaaa ctgttccgtt 2640
acctctttgt tgtctgaaac caaggaaaga ccagacggta ccaagcaaat cagagttacc 2700
ggtgtcgaat tcactcaagc tggttctggt aagaccacca ttttggctga tgctgttatc 2760
ttggccaccg gtggtttctc caacgacaag actgctgatt ctttgttgag agaacatgcc 2820
ccacacttgg ttaacttccc aaccaccaac ggtccatggg ctactggtga tggtgtcaag 2880
ttggctcaaa gattaggtgc tcaattggtc gatatggaca aggttcaatt gcacccaact 2940
ggtttgatca acccaaagga cccagccaac ccaaccaaat tcttgggtcc agaagctcta 3000
agaggttctg gtggtgtttt gttgaacaaa caaggtaaga gatttgtcaa cgaattggat 3060
ttgagatctg ttgtttccaa ggccatcatg gaacaaggtg ctgaataccc aggttctggt 3120
ggttccatgt ttgcttactg tgtcttgaac gctgctgctc aaaaattgtt tggtgtttcc 3180
tctcacgaat totactggaa gaagatgggt ttgttcgtca aggctgacac catgagagac 3240
ttggctgctt tgattggttg tccagttgaa Lccgttcaac aaactttaga agaatacgaa 3300
agattatcca tctctcaaag atcttgtcca attaccagaa aatctgttta cccatgtgtt 3360
ttgggtacca aaggtccata ctatgtcgcc tttgtcactc catctatcca ctacaccatg 3420
ggtggttgtt tqatttctcc atctgctgaa atccaaatga agaacacttc ttccagagct 3480
ccattgtccc actccaaccc aatcttgggt ttattcggtg ctggtgaagt caccggtggt 3540
gtccacggtg gtaacagatt aggtggtaac tctttgttgg aatgtgttgt tttcggtaga 3600
attgccggtg acagagcttc taccattttg caaagaaagt cctctgcttt gtctttcaag 3660
gtctggacca ctgttgtttt gagagaagtc agagaaggtg gtgtctacgg tgctggttcc 3720
cgtgtcttga gattcaactt accaggtgct ctacaaagat ctggtctatc cttgqqtcaa 3780
ttcattgcca tcagaggtga ctgggacggt caacaattga ttggttacta ctctccaatc 3840
actttgccag acgatttggg tatgattgac attttggcca gatctgacaa gggtacttta 3900
cgtgaatgga tctctgcttt ggaaccaggt gacgctgtcg aaatgaaggc ttgLggtggt 3960
ttggtcatcg aaagaagatt atctgacaag cacttcgttt tcatgggtca cattatcaac 4020
aagctatgtt tgattgctgg tggtaccggt gttgctccaa tgttgcaaat catcaaggcc 4080

CA 02771162 2012-02-14
12d
gctttcatga agccattcat cgacactttg gaatccgtcc acttgatcta cgctgctgaa 4140
gatgtcactg aattgactta cagagaagtt ttggaagaac gtcgtcgtga atccagaggt 4200
aaattcaaga aaactttcgt tttgaacaga cctcctccat tatggactga cggtgtcggt 4260
ttcatcgacc gtggtatctt gaccaaccac gttcaaccac catctgacaa cttattggtt 4320
gccatctgtg gtccaccagt tatgcaaaga attgtcaagg ccactttaaa gactttaggt 4380
tacaacatga acttggtcag aaccgttgac gaaactgaac catctggaag ttaaggcccg 4440
ggcgtgaatt tactttaaat cttgcattta aataaatttt ctttttatag ctttatgact 4500
tagtttcaat ttatatacta ttttaatgac attttcgatt cattgattga aagctttgtg 4560
ttttttcttg atgcgctatt gcattgttct tgtctttttc gccacatgta atatctgtag 4620
tagatacctg atacattgtg gatgctgagt gaaattttag ttaataatgg aggcgctctt 4680
aataattttg gggatattgg cttttttttt taaagtttac aaatgaattt tttccgccag 4740
gataacgatt ctgaagttac tcttagcgtt cctatcggta cagccatcaa atcatgccta 4800
taaatcatgc ctatatttgc gtgcagtcag tatcatctac atgaaaaaaa ctcccgcaat 4860
ttcttataga atacgttgaa aattaaatgt acgcgccaag ataagataac atatatctag 4920
atgcagtaat atacacagat tccggccggc cgcggccgc 4959
<210> 3
<211> 2950
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic construct TDH1p-FUMR-TDH1t for expression in S.
cerevisiae
<400> 3
ggatcccttc ccttttacag tgcttcggaa aagcacagcg ttgtccaagg gaacaatttt 60
tcttcaagtt aatgcataag aaatatcttt ttttatgttt agctaagtaa aagcagcttg 120
gagtaaaaaa aaaaatgagt aaatttctcg atggattagt ttctcacagg taacataaca 180
aaaaccaaga aaagccogct tctgaaaact acagttgact tgtatgctaa agggccagac 240
taatgggagg agaaaaagaa acgaatgtat atgctcattt acactctata tcaccatatg 300
gaggataagt tgggctgagc ttctgatcca atttattcta tccattagtt gctgatatgt 360
cccaccagcc aacacttgat agtatctact cgccattcac ttccagcagc gccagtaggg 420
ttgttgagct Lagtaaaaat gtgcgcacca caagcctaca tgactccacg tcacatgaaa 480
ccacaccgtg gggccttgtt gcgctaggaa taggatatgc gacgaagacg cttctgctta 540
gtaaccacac cacattttca gggggtcgat ctgottgott cctttactgt cacgagcggc 600
ccataatcgc gctttttttt taaaaggcgc gagacagcaa acaggaagct cgggtttcaa 660
ccttcggagt ggtcgcagat ctggagactg gatctttaca atacagtaag gcaagccacc 720
atctgcttct taggtgcatg cgacggtatc cacgtgcaga acaacatagt ctgaagaagg 780
gggggaggag catgttcatt ctctgtagca gtaagagctt ggtgataatg accaaaactg 840
gagtctcgaa atcatataaa tagacaatat attttcacac aatgagattt gtagtacagt 900
tctattctct ctcttgcata aataagaaat tcatcaagaa cttggtttga tatttcacca 960
acacacacaa aaaacagtac ttcactaaat ttacacacaa aacaaaatgt cctotgettc 1020
tgctgctttg caaaaattca gagctgaaag agataccttc ggtgacttgc aagttccagc 1080
tgaccgttac tggggtgctc aaactcaaag atctttgcaa aactttgaca ttggtggtcc 1140
aactgaaaga atgccagaac cattaatcag agctttcgqt gttttgaaga aggctgctgc 1200
caccgtcaac atgacctacg gtttggaccc aaaggttggt gaagccatcc aaaaggctgc 1260
tgacgaagtt atcgatggtt ctttgattga ccatttccca ttggttgtct ggcaaaccgg 1320
ttctggtact caaaccaaga tgaacgtcaa tgaagtcatc tccaacagag ccattgaatt 1380
gttgggtggt gaattaggtt ccaaggctcc agtccaccca aacgatcatg tcaacatgtc 1440
tcaatcttcc aacgacactt tcccaactgc catgcacgtt gctgccgttg ttgaaattca 1500
cggtagattg attccagctt tgaccacttt gagagatgct ttgcaagcca aatctgctga 1560
attcgaacac atcatcaaga ttggtagaac ccacttgcaa gatgctaccc cattgacttt 1620
aggtcaagaa ttctccggtt acactcaaca attgacctac ggtattgctc gtgttcaagg 1680
tactttggaa agattataca acttggctca aggtggtact gctgtcggta ctggtttgaa 1740

CA 02771162 2012-02-14
12e
caccagaaag ggtttcgatg ccaaggttgc tgaagccatt gcttccatca ctggtttacc 1800
attcaagacc gctccaaaca aattcgaagc tttggctgct cacgacgctt tggttgaagc 1860
tcacggtgct ttgaacaccg ttgcttgttc tttgatgaag attgccaacg atatccgtta 1920
cttgggttct ggtccaagat gtggtttagg tgaattgtct ctaccagaaa acgaaccagg 1980
ttcttccatc atgccaggta aggtcaaccc aactcaatgt gaagctatga ccatggtttg 2040
tgctcaagtc atgggtaaca acactgccat ctctgttgct ggttccaacg gtcaattcga 2100
attgaatgtc tttaaaccag tcatgatcaa gaacttgatc caatccatca gattaatctc 2160
tgacgcttcc atctctttca ccaagaactg tgttgtcggt attgaagcta acgaaaagaa 2220
gatctcctcc atcatgaacg aatctttgat gttggtcact gctttgaacc ctcacattgg 2280
ttacgacaag gctgccaagt gtgccaagaa ggctcacaag gaaggtacca ctttgaaaga 2340
agctgctcta tctttgggtt acttgacctc tgaagaattc gaccaatggg ttagacctga 2400
ggacatgatt tctgccaagg attaaggccc gggcataaag caatcttgat gaggataatg 2460
attttttttt gaatatacat aaatactacc gtttttctgc tagattttgt gaagacgtaa 2520
ataagtacat attacttttt aagccaagac aagattaagc attaacttta ccottttctc 2580
ttctaagttt caatactagt tatcactgtt taaaagttat ggcgagaacg tcggcggtta 2640
aaatatatta ccctgaacgt ggtgaattga agttctagga tggtttaaag atttttcctt 2700
tttgggaaat aagtaaacaa tatattgctg cctttgcaaa acgcacatac ccacaatatg 2760
tgactattgg caaagaacgc attatccttt gaagaggtgg atactgatac taagagagtc 2820
tctattccgg ctccactttt agtccagaga ttacttgtct tcttacgtat cagaacaaga 2880
aagcatttcc aaagtaattg catttgccct tgagcagtat atatatacta agaaggcgcg 2940
ccgcggccgc 2950
<210> 4
<211> 1966
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic construct TDH3p-MDH3-TDH3t for expression in S.
cerevisiae
<400> 4
ggatccggcg cgccacgcgt ggccggcctt agtcaaaaaa ttagcctttt aattctgctg GO
taacccgtac atgcccaaaa tagggggcgg gttacacaga atatataaca tcgtaggtgt 120
ctgggtgaac agtttattcc tggcatccac taaatataat ggagcccgct ttttaagctg 180
gcatccagaa aaaaaaagaa tcccagcacc aaaatattgt tttcttcacc aaccatcagt 240
tcataggtcc attctcttag cgcaactaca gagaacaggg gcacaaacag gcaaaaaacg 300
ggcacaacct caatggagtg atgcaacctg cctggagtaa atgatgacac aaggcaattg 360
acccacgcat gtatctatct cattttcLta caccttcLat taccttctgc tctctctgat 420
ttggaaaaag ctgaaaaaaa aggttgaaac cagttccctg aaattattcc cctacttgac 480
taataagtat ataaagacgg taggtattga ttgtaattct gtaaatctat ttcttaaact 540
tcttaaattc tacttttata gttagtcttt tttttagttt taaaacacca agaacttagt 600
ttcgaataaa cacacataaa caaacaaaat ggttaaggtt gccatcttag gtgottctgg 660
tggtgtcggt caaccattat ctptattatt gaaattgtct ccatacgttt ctgaattggc 720
tttgtacgat atcagagctg ctgaaggtat tggtaaggat ttgtcccaca tcaacaccaa 780
ctcctcttgt gttggttacg acaaggattc catcgaaaac actttgtcca atgctcaagt 840
tgtcttgatt ccagctggtg ttccaagaaa gccaggtttg accagagatg atttgttcaa 900
gatgaacgct ggtatcgtta agtctttggt tactgctgtc ggtaaatttg ccccaaacgc 960
tcgtatctta gtcatctcca accctgttaa ctctttggtt ccaattgccg ttgaaacttt 1020
gaagaagatg ggtaagttca agccaggtaa cgttatgggt gtcaccaact tggatttggt 1080
cagagctgaa actttcttgg ttgactactt gatgttgaag aacccaaaga tcggtcaaga 1140
acaagacaag accaccatgc acagaaaggt caccgtcatc ggtggtcact ctggtgaaac 1200
catcattcca atcatcactg acaaatcctt ggttttccaa ttggacaagc aatacgaaca 1260
tttcatccac agagtccaat tcggtggtga cgaaattgtc aaggccaagc aaggtgccgg 1320
ttctgctacc ttgtccatgg ctttcgctgg tgccaaattt gctgaagaag tcttacgttc 1380

CA 02771162 2012-02-14
12f
tttccacaac gaaaagccag aaactgaatc tttgtctgct ttcgtctact tgccaggttt 1440
gaagaacggt aagaaggctc aacaattagt cggtgacaac tccattgaat acttctcttt 1500
gccaattgtt ttgagaaacg gttccgttgt ttccattgac acttctgttt tggaaaaatt 1560
gtctccaaga gaagaacaat tggtcaacac tgctgtcaag gaattgagaa agaacattga 1620
aaagggtaag tctttcatct tggacagtta aggtgaattt actttaaatc ttgcatttaa 1680
ataaattttc tttttatagc tttatgactt agtttcaatt tatatactat tttaatgaca 1740
ttttcgattc attgattgaa agctttgtgt tttttcttga tgcgctattg cattgttctt 1800
gtctttttcg ccacatgtaa tatctgtagt agatacctga tacattgtgg atgctgagtg 1860
aaattttagt taataatgga ggcgctctta ataattttgg ggatattggc tttttttttt 1920
aaagtttaca aatgaatttt ttccgccagg atgggcccgc ggccgc 1966
<210> 5
<211> 2240
<212> DNA
<213> Artificial Sequence
<220>
<223> Synthetic construct Enolp-SpMAEl-ENOt for expression in S.
cerevisiae
<400> 5
ggatccggcg cgccccgcgg aaccgccaga tattcattac ttgacgcaaa agcgtttgaa 60
ataatgacga aaaagaagga agaaaaaaaa agaaaaatac cgcttctagg cqggttatct 120
actgatccga gcttccacta ggatagcacc caaacacctg catatttgga cgacctttac 180
ttacaccacc aaaaaccact ttcgcctctc ccgcccctga taacgtccac taattgagcg 240
attacctgag cggtcctctt ttgtttgcag catgagactt gcatactgca aatcgtaagt 300
agcaacgtct caaggtcaaa actgtatgga aaccttgtca cctcacttaa ttctagctag 360
cctaccctgc aagtcaagag gtctccgtga ttcctagcca cctcaaggta tgcctctccc 420
cggaaactgt ggccttttct ggcacacatg atctccacga tttcaacata taaatagctt 480
ttgataatgg caatattaat caaatttatt ttacttcttt cttgtaacat ctctcttgta 540
atcccttatt ccttctagct atttttcata aaaaaccaag caactgctta tcaacacaca 600
aacactaaaa caaaatgggt gaattgaagg aaatcttgaa gcaacgttac catgaattgt 660
tggactggaa cgtcaaggct ccacacgttc cattgtctca aagattgaag catttcacct 720
ggtcctggtt tgcttgtacc atggccactg gtggtgtcgg tttgatcatt ggttctttcc 780
cattcagatt ctacggtttg aacaccattg gtaagattgt ctacatctta caaatcttct 840
tattctcttt gtttggttct tgtatgttgt tcagattcat caaataccca tctaccatca 900
aggactcctg gaaccaccac ttggaaaaat tattcattgc tacctgtttg ctatccatct 960
ccactttcat tgacatgttg gccatctacg cttacccaga cactggtgaa tggatggtct 1020
gggttatcag aatcttatac tacatctacg ttgctgtctc tttcatctac tgtgtcatgg 1080
ctttcttcac cattttcaac aaccacgttt acaccattga aactgcttct ccagcttgga 1140
tcttaccaat tttcccacca atgatctgtg gtgtcattgc tggtgctgtc aactccactc 1200
aaccagctca ccaattgaag aacatggtta tcttcggtat cttattccaa ggtttgggtt 1260
tctgggttta cttgttgttg tttgctgtca acgttttgag attcttcacc gttggtttgg 1320
ccaagcctca agacagacca ggtatgttca tgtttgttgg tccaccagct ttctccggtt 1380
tggctttgat caacattgcc cgtggtgcta tgggttccag accatacatt ttcgtcggtg 1440
ccaattcttc tgaatacttg ggtttcgttt ccactttcat ggccattttc atctggggtt 1500
tggctgcttg gtgttactgt ttggccatgg tttctttctt ggctggtttc ttcaccagag 1560
ctccattgaa atttgcttgt ggttggtttg ctttcatott cccaaacgtc ggtttcgtta 1620
actgtaccat tgaaattggt aagatgattg actccaaggc cttccaaatg ttcggtcaca 1680
tcatcggtgt catcctatgt atccaatgga tcttgttgat gtacttgatg gtoagagctt 1740
tcttggtcaa cgatttgtgt tacccaggta aggatgaaga tgctcaccca cctccaaagc 1800
caaacactgg tgttttgaac ccaactttcc caccagaaaa ggctccagct tctttggaaa 1860
aggttgacac ccacgttact tccactggtg gtgaatctga tcctccatct tctgaacacg 1920
aaagcgttta agagcttttg attaagcctt ctagtccaaa aaacacgttt ttttgtcatt 1980
tatttcattt tcttagaata gtttagttta ttcattttat agtcacgaat gttttatgat 2040

CA 02771162 2012-02-14
12g
tctatatagg gttgcaaaca agcatttttc attttatgtt aaaacaattt caggtttacc 2100
ttttattctg cttgtggtga cgcgggtatc cgcccgctct tttggtcacc catgtattta 2160
attgcataaa taattcttaa aagtggagct agtctatttc tatttacata cctctcattt 2220
ctcatttcct ccgcggccgc 2240
<210> 6
<211> 538
<212> PRT
<213> Artificial Sequence
<220>
<223> Actinobacillus succinogenes phosphoenolpyruvate carboxykinase
amino acid sequence, with EGY to OAF modification at pos 120 -
122.
<400> 6
Met Thr Asp Leu Asn Lys Leu Val Lys Glu Leu Asn Asp Leu Gly Leu
1 5 10 15
Thr Asp Val Lys Glu Ile Val Tyr Asn Pro Ser Tyr Glu Gin Leu Phe
20 25 30
Glu Glu Glu Thr Lys Pro Gly Leu Glu Gly Phe Asp Lys Gly Thr Leu
35 40 45
Thr Thr Leu Gly Ala Val Ala Val Asp Thr Gly Ile Phe Thr Gly Arg
50 55 60
Ser Pro Lys Asp Lys Tyr Ile Val Cys Asp Glu Thr Thr Lys Asp Thr
65 70 75 80
Val Trp Trp Asn Ser Glu Ala Ala Lys Asn Asp Asn Lys Pro Met Thr
85 90 95
Gin Glu Thr Trp Lys Ser Leu Arg Glu Leu Val Ala Lys Gin Leu Ser
100 105 110
Gly Lys Arg Leu Phe Val Val Asp Ala Phe Cys Gly Ala Ser Glu Lys
115 120 125
His Arg Ile Gly Val Arg Met Val Thr Glu Val Ala Trp Gin Ala His
130 135 140
Phe Val Lys Asn Met Phe Ile Arg Pro Thr Asp Glu Glu Leu Lys Asn
145 150 155 160
Phe Lys Ala Asp Phe Thr Val Leu Asn Gly Ala Lys Cys Thr Asn Pro
165 170 175
Asn Trp Lys Glu Gin Gly Leu Asn Ser Glu Asn Phe Val Ala Phe Asn
180 185 190
Ile Thr Glu Gly Ile Gin Leu Ile Gly Gly Thr Trp Tyr Gly Gly Glu
195 200 205
Met Lys Lys Gly Met Phe Ser Met Met Asn Tyr Phe Leu Pro Leu Lys
210 215 220
Gly Val Ala Ser Met His Cys Ser Ala Asn Val Gly Lys Asp Sly Asp
225 230 235 240
Val Ala Ile Phe Phe Gly Leu Ser Gly Thr Gly Lys Thr Thr Leu Ser
245 250 255
Thr Asp Pro Lys Arg Gin Leu Ile Gly Asp Asp Glu His Gly Trp Asp
260 265 270
Glu Ser Gly Val Phe Asn Phe Glu Gly Gly Cys Tyr Ala Lys Thr Ile
275 280 285
Asn Leu Ser Gin Glu Asn Glu Pro Asp Ile Tyr Gly Ala Ile Arg Arg
290 295 300

CA 02771162 2012-02-14
12h
Asp Ala Leu Leu Glu Asn Val Val Val Arg Ala Asp Gly Ser Vol Asp
305 310 315 320
Phe Asp Asp Gly Ser Lys Thr Glu Asn Thr Arg Val Ser Tyr Pro Ile
325 330 335
Tyr His lie Asp Asn Ile Val Arg Pro Val Ser Lys Ala Gly His Ala
340 345 350
Thr Lys Val Ile Phe Leu Thr Ala Asp Ala Phe Gly Vol Leu Pro Pro
355 360 365
Val Ser Lys Leu Thr Pro Glu Gln Thr Glu Tyr Tyr Phe Leu Ser Gly
370 375 380
Phe Thr Ala Lys Leu Ala Gly Thr Glu Arg Gly Val Thr Glu Pro Thr
385 390 395 400
Pro Thr Phe Ser Ala Cys Phe Gly Ala Ala Phe Leu Ser Leu His Pro
405 410 415
Ile Gln Tyr Ala Asp Val Leu Val Glu Arg Met Lys Ala Ser Gly Ala
420 425 430
Glu Ala Tyr Leu Vol Asn Thr Gly Trp Asn Gly Thr Gly Lys Arg Ile
435 440 445
Ser Ile Lys Asp Thr Arg Gly Ile Ile Asp Ala Ile Leu Asp Gly Ser
450 455 460
Ile Glu Lys Ala Glu Met Gly Glu Leu Pro Ile Phe Asn Leu Ala Ile
465 470 475 480
Pro Lys Ala Leu Pro Gly Val Asp Pro Ala Ile Leu Asp Pro Arg Asp
485 490 495
Thr Tyr Ala Asp Lys Ala Gln Trp Gln Vol Lys Ala Glu Asp Leu Ala
500 505 510
Asn Arg Phe Val Lys Asn Phe Val Lys Tyr Thr Ala Asn Pro Glu Ala
515 520 525
Ala Lys Leu Val Gly Ala Gly Pro Lys Ala
530 535
<210> 7
<211> 1139
<212> PRT
<213> Artificial Sequence
<220>
<223> Glycosomal Trypanosoma brucei fumarate reductase (FRDg) amino
acid sequence lacking 3 aa C-terminal targeting signal.
<400> 7
Met Val Asp Gly Arg Ser Ser Ala Ser Ile Vol Ala Val Asp Pro Glu
1 5 10 15
Arg Ala Ala Arg Glu Arg Asp Ala Ala Ala Arg Ala Leu Leu Gin Asp
20 25 30
Ser Pro Leu His Thr Thr Met Gln Tyr Ala Thr Ser Gly Leu Glu Leu
35 40 45
Thr Val Pro Tyr Ala Leu Lys Val Vol Ala Ser Ala Asp Thr Phe Asp
50 55 60
Arg Ala Lys Glu Val Ala Asp Glu Val Leu Arg Cys Ala Trp Gln Leu
65 70 75 80
Ala Asp Thr Val Leu Asn Ser Phe Asn Pro Asn Ser Glu Val Ser Leu
85 90 95
Val Gly Arg Leu Pro Vol Gly Gln Lys His Gln Met Ser Ala Pro Leu
100 105 110

CA 02771162 2012-02-14
12i
Lys Arg Val Met Ala Cys Cys Gin Arg Val Tyr Asn Ser Ser Ala Gly
115 120 125
Cys Phe Asp Pro Ser Thr Ala Pro Val Ala Lys Ala Leu Arg Glu Ile
130 135 140
Ala Leu Gly Lys Glu Arg Asn Asn Ala Cys Leu Glu Ala Leu Thr Gin
145 150 155 160
Ala Cys Thr Leu Pro Asn Ser Phe Val Ile Asp Phe Glu Ala Gly Thr
165 170 175
Ile Ser Arg Lys His Glu His Ala Ser Leu Asp Leu Gly Gly Val Ser
180 185 190
Lys Gly Tyr Ile Val Asp Tyr Val Ile Asp Asn Ile Asn Ala Ala Gly
195 200 205
?he Gin Asn Val Phe Phe Asp Trp Gly Gly Asp Cys Arg Ala Ser Gly
210 215 220
Met Asn Ala Arg Asn Thr Pro Trp Val Val Gly Ile Thr Arg Pro Pro
225 230 235 240
Ser Leu Asp Met Leu Pro Asn Pro Pro Lys Glu Ala Ser Tyr Ile Ser
245 250 255
Val Ile Ser Leu Asp Asn Glu Ala Leu Ala Thr Ser Gly Asp Tyr Glu
260 265 270
Asn Leu Ile Tyr Thr Ala Asp Asp Lys Pro Leu Thr Cys Thr Tyr Asp
275 280 285
Trp Lys Gly Lys Glu Leu Met Lys Pro Ser Gin Ser Asn Ile Ala Gin
290 295 300
Val Ser Val Lys Cys Tyr Ser Ala Met Tyr Ala Asp Ala Leu Ala Thr
305 310 315 320
Ala Cys Phe Ile Lys Arg Asp Pro Ala Lys Val Arg Gin Leu Leu Asp
325 330 335
Gly Trp Arg Tyr Val Arg Asp Thr Val Arg Asp Tyr Arg Val Tyr Val
340 345 350
Arg Glu Asn Glu Arg Val Ala Lys Met Phe Glu Ile Ala Thr Glu Asp
355 360 365
Ala Glu Met Arg Lys Arg Arg Ile Ser Asn Thr Leu Pro Ala Arg Val
370 375 380
Ile Val Val Gly Gly Gly Leu Ala Gly Lou Ser Ala Ala Ile Glu Ala
385 390 395 400
Ala Gly Cys Gly Ala Gin Val Val Leu Met Glu Lys Glu Ala Lys Leu
405 410 415
Gly Gly Asn Ser Ala Lys Ala Thr Ser Gly lie Asn Gly Trp Gly Thr
420 425 430
Arg Ala Gin Ala Lys Ala Ser Ile Val Asp Gly Sly Lys Tyr Phe Glu
435 440 445
Arg Asp Thr Tyr Lys Ser Gly Ile Gly Gly Asn Thr Asp Pro Ala Leu
450 455 460
Val Lys Thr Leu Ser Met Lys Ser Ala Asp Ala Ile Gly Trp Leu Thr
465 470 475 480
Ser Leu Gly Val Pro Leu Thr Val Leu Ser Gin Leu Gly Gly His Ser
485 490 495
Arg Lys Arg Thr His Arg Ala Pro Asp Lys Lys Asp Gly Thr Pro Leu
500 505 510
Pro Ile Gly Phe Thr Ile Met Lys Thr Leu Glu Asp His Val Arg Gly
515 520 525
Asn Leu Ser Gly Arg Ile Thr Ile Met Glu Asn Cys Ser Val Thr Ser
530 535 540
Leu Leu Ser Glu Thr Lys Glu Arg Pro Asp Gly Thr Lys Gin Ile Arg
545 550 555 560

CA 02771162 2012-02-14
12j
Val Thr Gly Val Glu Phe Thr Gin Ala Gly Ser Gly Lys Thr Thr Ile
565 570 575
Leu Ala Asp Ala Val Ile Leu Ala Thr Gly Gly Phe Ser Asn Asp Lys
580 585 590
Thr Ala Asp Ser Leu Leu Arg Glu His Ala Pro His Leu Val Asn Phe
595 600 605
Pro Thr Thr Asn Gly Pro Trp Ala Thr Gly Asp Gly Val Lys Leu Ala
610 615 620
Gln Arg Leu Gly Ala Gin Leu Val Asp Met Asp Lys Val Gin Leu His
625 630 635 640
Pro Thr Gly Leu Ile Asn Pro Lys Asp Pro Ala Asn Pro Thr Lys Phe
645 650 655
Leu Gly Pro Glu Ala Leu Arg Gly Ser Gly Gly Val Leu Leu Asn Lys
660 665 670
Gin Gly Lys Arg Phe Val Asn Glu Leu Asp Leu Arg Ser Val Val Ser
675 680 685
Lys Ala Ile Met Glu Gin Gly Ala Glu Tyr Pro Gly Ser Gly Gly Ser
690 695 700
Met Phe Ala Tyr Cys Val Leu Asn Ala Ala Ala Gin Lys Leu Phe Gly
705 710 715 720
Val Ser Ser His Glu Phe Tyr Trp Lys Lys Met Gly Leu Phe Val Lys
725 730 735
Ala Asp Thr Met Arg Asp Leu Ala Ala Leu Ile Gly Cys Pro Val Glu
740 745 750
Ser Val Gin Gin Thr Leu Glu Glu Tyr Glu Arg Leu Ser Ile Ser Gin
755 760 765
Arg Ser Cys Pro Ile Thr Arg Lys Ser Val Tyr Pro Cys Val Leu Gly
770 775 780
Thr Lys Gly Pro Tyr Tyr Val Ala Phe Val Thr Pro Ser Ile His Tyr
785 790 795 800
Thr Met Gly Gly Cys Leu Ile Ser Pro Ser Ala Glu Ile Gin Met Lys
805 810 815
Asn Thr Ser Ser Arg Ala Pro Leu Ser His Ser Asn Pro Ile Leu Gly
820 825 830
Leu Phe Gly Ala Gly Glu Val Thr Gly Gly Val His Gly Gly Asn Arg
835 840 845
Leu Gly Gly Asn Ser Leu Leu Glu Cys Val Val Phe Gly Arg Ile Ala
850 855 860
Gly Asp Arg Ala Ser Thr Ile Leu Gin Arg Lys Ser Ser Ala Leu Ser
865 870 875 880
Phe Lys Val Trp Thr Thr Val Val Leu Arg Glu Val Arg Glu Gly Gly
885 890 895
Val Tyr Gly Ala Gly Ser Arg Val Leu Arg Phe Asn Leu Pro Gly Ala
900 905 910
Leu Gin Arg Ser Gly Leu Ser Leu Gly Gin Phe Ile Ala Ile Arg Gly
915 920 925
Asp Trp Asp Gly Gin Gin Leu Ile Gly Tyr Tyr Ser Pro Ile Thr Leu
930 935 940
Pro Asp Asp Leu Gly Met Ile Asp Ile Leu Ala Arg Ser Asp Lys Gly
945 950 955 960
Thr Leu Arg Glu Trp Ile Ser Ala Leu Glu Pro Gly Asp Ala Val Glu
965 970 975
Met Lys Ala Cys Gly Gly Leu Val Ile Glu Arg Arg Leu Ser Asp Lys
980 985 990
His Phe Val Phe Met Gly His Ile Ile Asn Lys Leu Cys Leu Ile Ala
995 1000 1005

CA 02771162 2012-02-14
12k
Gly Gly Thr Gly Val Ala Pro Met Leu Gin Ile Ile Lys Ala Ala
1010 1015 1020
Phe Met Lys Pro Phe Ile Asp Thr Leu Glu Ser Val His Leu Ile
1025 1030 1035
Tyr Ala Ala Glu Asp Val Thr Glu Leu Thr Tyr Arg Glu Val Leu
1040 1045 1050
Glu Glu Arg Arg Arg Glu Ser Arg Gly Lys Phe Lys Lys Thr Phe
1055 1060 1065
Val Leu Asn Arg Pro Pro Pro Leu Trp Thr Asp Gly Val Gly Phe
1070 1075 1080
Ile Asp Arg Gly Ile Leu Thr Asn His Val Gln Pro Pro Ser Asp
1085 1090 1095
Asn Leu Leu Val Ala Ile Cys Gly Pro Pro Val Met Gln Arg Ile
1100 1105 1110
Val Lys Ala Thr Leu Lys Thr Leu Gly Tyr Asn Met Asn Leu Val
1115 1120 1125
Arg Thr Val Asp Glu Thr Glu Pro Ser Gly Ser
1130 1135
<210> 8
<211> 472
<212> PRT
<213> Artificial Sequence
<220>
<223> Rhizopus oryzae fumarase amino acid sequence, lacking the first
23 N-terminal amino acids.
<400> 8
Met Ser Ser Ala Ser Ala Ala Leu Gln Lys Phe Arg Ala Glu Arg Asp
1 5 10 15
Thr Phe Gly Asp Leu Gln Val Pro Ala Asp Arg Tyr Trp Gly Ala Gln
20 25 30
Thr Gln Arg Ser Leu Gln Asn Phe Asp Ile Gly Gly Pro Thr Glu Arg
35 40 45
Met Pro Glu Pro Leu Ile Arg Ala Phe Gly Val Leu Lys Lys Ala Ala
50 55 60
Ala Thr Val Asn Met Thr Tyr Gly Leu Asp Pro Lys Val Gly Glu Ala
65 70 75 80
Ile Gln Lys Ala Ala Asp Glu Val Ile Asp Gly Ser Leu Ile Asp His
85 90 95
Phe Pro Leu Val Val Trp Gln Thr Gly Ser Gly Thr Gln Thr Lys Met
100 105 110
Asn Val Asn Glu Val Ile Ser Asn Arg Ala Ile Glu Leu Leu Gly Gly
115 120 125
Glu Leu Gly Ser Lys Ala Pro Val His Pro Asn Asp His Val Asn Met
130 135 140
Ser Gln Ser Ser Asn Asp Thr Phe Pro Thr Ala Met His Val Ala Ala
145 150 155 160
Val Val Glu Ile His Gly Arg Leu Ile Pro Ala Leu Thr Thr Leu Arg
165 170 175
Asp Ala Leu Gln Ala Lys Ser Ala Glu Phe Glu His Ile Ile Lys Ile
180 185 190
Gly Arg Thr His Leu Gln Asp Ala Thr Pro Leu Thr Leu Gly Gln Glu
195 200 205

CA 02771162 2012-02-14
121
Phe Ser Gly Tyr Thr Gin Gin Leu Thr Tyr Gly Ile Ala Arg Val Gin
210 215 220
Gly Thr Leu Glu Arg Leu Tyr Asn Leu Ala Gin Gly Gly Thr Ala Val
225 230 235 240
Gly Thr Gly Leu Asn Thr Arg Lys Gly Phe Asp Ala Lys Val Ala Glu
245 250 255
Ala Ile Ala Ser Ile Thr Gly Leu Pro Phe Lys Thr Ala Pro Asn Lys
260 265 270
Phe Glu Ala Leu Ala Ala His Asp Ala Leu Val Glu Ala His Gly Ala
275 280 285
Leu Asn Thr Val Ala Cys Ser Leu Met Lys Ile Ala Asn Asp Ile Arg
290 295 300
Tyr Leu Gly Ser Gly Pro Arg Cys Gly Leu Gly Glu Lou Ser Leu Pro
305 310 315 320
Glu Asn Glu Pro Gly Ser Ser Ile Met Pro Gly Lys Val Asn Pro Thr
325 330 335
Gin Cys Glu Ala Met Thr Met Val Cys Ala Gin Val Met Gly Asn Asn
340 345 350
Thr Ala Ile Ser Val Ala Gly Ser Asn Gly Gin Phe Glu Leu Asn Val
355 360 365
Phe Lys Pro Val Met Ile Lys Asn Leu Ile Gin Ser Ile Arg Leu Ile
370 375 300
Ser Asp Ala Ser Ile Ser Phe Thr Lys Asn Cys Val Val Gly Ile Glu
385 390 395 400
Ala Asn Glu Lys Lys Ile Ser Ser Ile Met Asn Glu Ser Leu Met Leu
405 410 415
Val Thr Ala Leu Asn Pro His Ile Gly Tyr Asp Lys Ala Ala Lys Cys
420 425 430
Ala Lys Lys Ala His Lys Glu Gly Thr Thr Leu Lys Glu Ala Ala Lou
435 440 445
Ser Leu Gly Tyr Leu Thr Ser Glu Glu Phe Asp Gin Trp Val Arg Pro
450 455 460
Glu Asp Met Ile Ser Ala Lys Asp
465 470
<210> 9
<211> 340
<212> PRT
<213> Artificial Sequence
<220>
<223> Saccharomyces cerevisiae peroxisomal malate dehydrogenase (Mdh3)
amino acid sequence, lacking the 3 C-terminal perexisomal
targeting sequence (SKL).
<400> 9
Met Val Lys Val Ala Ile Lou Gly Ala Ser Gly Gly Val Gly Gin Pro
1 5 10 15
Leu Ser Leu Leu Lou Lys Leu Ser Pro Tyr Val Sec Glu Lou Ala Lou
20 25 30
Tyr Asp Ile Arg Ala Ala Glu Gly Ile Gly Lys Asp Lou Ser His Ile
35 40 45
Asn Thr Asn Ser Ser Cys Val Gly Tyr Asp Lys Asp Ser Ile Glu Asn
50 55 60

CA 02771162 2012-02-14
12m
Thr Leu Ser Asn Ala Gin Val Val Leu Ile Pro Ala Gly Val Pro Arg
65 70 75 80
Lys Pro Gly Leu Thr Arg Asp Asp Leu Phe Lys Met Asn Ala Gly Ile
85 90 95
Val Lys Ser Leu Val Thr Ala Val Gly Lys Phe Ala Pro Asn Ala Arg
100 105 110
Ile Leu Val Ile Ser Asn Pro Val Asn Ser Leu Val Pro Ile Ala Val
115 120 125
Glu Thr Leu Lys Lys Met Gly Lys Phe Lys Pro Gly Asn Val Met Gly
130 135 140
Val Thr Asn Leu Asp Leu Val Arg Ala Glu Thr Phe Leu Val Asp Tyr
145 150 155 160
Leu Met Leu Lys Asn Pro Lys Ile Gly Gin Glu Gin Asp Lys Thr Thr
165 170 175
Met His Arg Lys Val Thr Val Ile Gly Gly His Ser Gly Glu Thr Ile
180 185 190
Ile Pro Ile Ile Thr Asp Lys Ser Leu Val Phe Gin Leu Asp Lys Gin
195 200 205
Tyr Glu His Phe Ile His Arg Val Gin Phe Gly Gly Asp Glu Ile Val
210 215 220
Lys Ala Lys Gin Gly Ala Gly Ser Ala Thr Leu Ser Met Ala Phe Ala
225 230 235 240
Gly Ala Lys Phe Ala Glu Glu Val Leu Arg Ser Phe His Asn Glu Lys
245 250 255
Pro Glu Thr Glu Ser Leu Ser Ala Phe Val Tyr Leu Pro Gly Leu Lys
260 265 270
Asn Gly Lys Lys Ala Gin Gin Leu Val Gly Asp Asn Ser Ile Glu Tyr
275 280 285
Phe Ser Leu Pro Ile Val Leu Arg Asn Gly Ser Val Val Ser Ile Asp
290 295 300
Thr Ser Val Leu Glu Lys Leu Ser Pro Arg Glu Glu Gin Leu Val Asn
305 310 315 320
Thr Ala Val Lys Glu Leu Arg Lys Asn Ile Glu Lys Gly Lys Ser Phe
325 330 335
Ile Leu Asp Ser
340
<210> 10
<211> 438
<212> PRT
<213> Schizosaccharomyces pombe malate permease amino acid sequence.
<400> 10
Met Gly Glu Leu Lys Glu Ile Leu Lys Gin Arg Tyr His Glu Leu Leu
1 5 10 15
Asp Trp Asn Val Lys Ala Pro His Val Pro Leu Ser Gin Arg Leu Lys
20 25 30
His Phe Thr Trp Ser Trp Phe Ala Cys Thr Met Ala Thr Gly Gly Val
35 40 45
Gly Leu Ile Ile Gly Ser Phe Pro Phe Arg Phe Tyr Gly Leu Asn Thr
50 55 60
Ile Gly Lys Ile Val Tyr Ile Leu Gin Ile Phe Leu Phe Ser Leu Phe
65 70 75 80
Gly Ser Cys Met Leu Phe Arg Phe Ile Lys Tyr Pro Ser Thr Ile Lys
85 90 95

CA 02771162 2012-02-14
12n
Asp Ser Trp Asn His His Leu Glu Lys Leu Phe Ile Ala Thr Cys Leu
100 105 110
Leu Ser Ile Ser Thr Phe Ile Asp Met Leu Ala Ile Tyr Ala Tyr Pro
115 120 125
Asp Thr Gly Glu Trp Met Val Trp Val Ile Arg Ile Leu Tyr Tyr Ile
130 135 140
Tyr Val Ala Val Ser Phe Ile Tyr Cys Val Met Ala Phe Phe Thr Ile
145 150 155 160
Phe Asn Asn His Val Tyr Thr Ile Glu Thr Ala Ser Pro Ala Trp Ile
165 170 175
Leu Pro Ile Phe Pro Pro Met Ile Cys Gly Val Ile Ala Gly Ala Val
180 185 190
Asn Ser Thr Gin Pro Ala His Gin Leu Lys Asn Met Val Ile Phe Gly
195 200 205
Ile Leu Phe Gin Gly Leu Gly Phe Trp Val Tyr Leu Leu Leu Phe Ala
210 215 220
Val Asn Val Leu Arg Phe Phe Thr Val Gly Leu Ala Lys Pro Gin Asp
225 230 235 240
Arg Pro Gly Met Phe Met Phe Val Gly Pro Pro Ala Phe Ser Gly Leu
245 250 255
Ala Leu Ile Asn Ile Ala Arg Gly Ala Met Gly Ser Arg Pro Tyr Ile
260 265 270
Phe Val Gly Ala Asn Ser Ser Glu Tyr Leu Gly ?he Val Ser Thr Phe
275 280 285
Met Ala Ile Phe Ile Trp Gly Leu Ala Ala Trp Cys Tyr Cys Leu Ala
290 295 300
Met Val Ser Phe Leu Ala Gly Phe Phe Thr Arg Ala Pro Leu Lys Phe
305 310 315 320
Ala Cys Gly Trp Phe Ala Phe Ile Phe Pro Asn Val Gly Phe Val Asn
325 330 335
Cys Thr Ile Glu Ile Gly Lys Met Ile Asp Ser Lys Ala Phe Gin Met
340 345 350
Phe Gly His Ile Ile Gly Val Ile Leu Cys Ile Gin Trp Ile Leu Leu
355 360 365
Met Tyr Leu Met Val Arg Ala Phe Leu Val An Asp Leu Cys Tyr Pro
370 375 380
Gly Lys Asp Glu Asp Ala His Pro Pro Pro Lys Pro Asn Thr Gly Val
385 390 395 400
Leu Asn Pro Thr Phe Pro Pro Glu Lys Ala Pro Ala Ser Leu Glu Lys
405 410 415
Val Asp Thr His Val Thr Ser Thr Gly Gly Glu Ser Asp Pro Pro Ser
420 425 430
Ser Glu His Glu Ser Val
435

Dessin représentatif

Désolé, le dessin représentatif concernant le document de brevet no 2771162 est introuvable.

États administratifs

2024-08-01 : Dans le cadre de la transition vers les Brevets de nouvelle génération (BNG), la base de données sur les brevets canadiens (BDBC) contient désormais un Historique d'événement plus détaillé, qui reproduit le Journal des événements de notre nouvelle solution interne.

Veuillez noter que les événements débutant par « Inactive : » se réfèrent à des événements qui ne sont plus utilisés dans notre nouvelle solution interne.

Pour une meilleure compréhension de l'état de la demande ou brevet qui figure sur cette page, la rubrique Mise en garde , et les descriptions de Brevet , Historique d'événement , Taxes périodiques et Historique des paiements devraient être consultées.

Historique d'événement

Description Date
Paiement d'une taxe pour le maintien en état jugé conforme 2024-07-26
Requête visant le maintien en état reçue 2024-07-26
Inactive : Certificat d'inscription (Transfert) 2023-03-01
Inactive : Transferts multiples 2023-02-17
Représentant commun nommé 2019-10-30
Représentant commun nommé 2019-10-30
Accordé par délivrance 2018-09-04
Inactive : Page couverture publiée 2018-09-03
Inactive : Taxe finale reçue 2018-07-25
Préoctroi 2018-07-25
Un avis d'acceptation est envoyé 2018-03-05
Lettre envoyée 2018-03-05
Un avis d'acceptation est envoyé 2018-03-05
Inactive : Approuvée aux fins d'acceptation (AFA) 2018-03-01
Inactive : QS réussi 2018-03-01
Modification reçue - modification volontaire 2018-01-05
Inactive : Dem. de l'examinateur par.30(2) Règles 2017-07-05
Inactive : Rapport - Aucun CQ 2017-07-04
Modification reçue - modification volontaire 2017-01-30
Inactive : Rapport - Aucun CQ 2016-08-02
Inactive : Dem. de l'examinateur par.30(2) Règles 2016-08-02
Lettre envoyée 2015-08-17
Requête d'examen reçue 2015-08-05
Exigences pour une requête d'examen - jugée conforme 2015-08-05
Toutes les exigences pour l'examen - jugée conforme 2015-08-05
Requête pour le changement d'adresse ou de mode de correspondance reçue 2015-01-15
Inactive : Page couverture publiée 2012-04-24
Demande reçue - PCT 2012-03-27
Inactive : CIB attribuée 2012-03-27
Inactive : CIB attribuée 2012-03-27
Inactive : Notice - Entrée phase nat. - Pas de RE 2012-03-27
Lettre envoyée 2012-03-27
Inactive : CIB en 1re position 2012-03-27
Exigences pour l'entrée dans la phase nationale - jugée conforme 2012-02-14
LSB vérifié - pas défectueux 2012-02-14
Inactive : Listage des séquences - Reçu 2012-02-14
Demande publiée (accessible au public) 2011-03-03

Historique d'abandonnement

Il n'y a pas d'historique d'abandonnement

Taxes périodiques

Le dernier paiement a été reçu le 2018-07-10

Avis : Si le paiement en totalité n'a pas été reçu au plus tard à la date indiquée, une taxe supplémentaire peut être imposée, soit une des taxes suivantes :

  • taxe de rétablissement ;
  • taxe pour paiement en souffrance ; ou
  • taxe additionnelle pour le renversement d'une péremption réputée.

Les taxes sur les brevets sont ajustées au 1er janvier de chaque année. Les montants ci-dessus sont les montants actuels s'ils sont reçus au plus tard le 31 décembre de l'année en cours.
Veuillez vous référer à la page web des taxes sur les brevets de l'OPIC pour voir tous les montants actuels des taxes.

Titulaires au dossier

Les titulaires actuels et antérieures au dossier sont affichés en ordre alphabétique.

Titulaires actuels au dossier
TECHNIP ENERGIES FRANCE S.A.S.
Titulaires antérieures au dossier
MICKEL LEONARDUS AUGUST JANSEN
RENE VERWAAL
Les propriétaires antérieurs qui ne figurent pas dans la liste des « Propriétaires au dossier » apparaîtront dans d'autres documents au dossier.
Documents

Pour visionner les fichiers sélectionnés, entrer le code reCAPTCHA :



Pour visualiser une image, cliquer sur un lien dans la colonne description du document. Pour télécharger l'image (les images), cliquer l'une ou plusieurs cases à cocher dans la première colonne et ensuite cliquer sur le bouton "Télécharger sélection en format PDF (archive Zip)" ou le bouton "Télécharger sélection (en un fichier PDF fusionné)".

Liste des documents de brevet publiés et non publiés sur la BDBC .

Si vous avez des difficultés à accéder au contenu, veuillez communiquer avec le Centre de services à la clientèle au 1-866-997-1936, ou envoyer un courriel au Centre de service à la clientèle de l'OPIC.


Description du
Document 
Date
(aaaa-mm-jj) 
Nombre de pages   Taille de l'image (Ko) 
Revendications 2012-02-13 2 56
Description 2012-02-13 12 645
Dessins 2012-02-13 2 17
Abrégé 2012-02-13 1 52
Description 2012-02-14 27 1 388
Revendications 2017-01-29 2 56
Revendications 2018-01-04 2 51
Description 2017-01-29 27 1 443
Confirmation de soumission électronique 2024-07-25 3 78
Avis d'entree dans la phase nationale 2012-03-26 1 194
Courtoisie - Certificat d'enregistrement (document(s) connexe(s)) 2012-03-26 1 104
Rappel de taxe de maintien due 2012-04-24 1 112
Rappel - requête d'examen 2015-04-26 1 116
Accusé de réception de la requête d'examen 2015-08-16 1 175
Avis du commissaire - Demande jugée acceptable 2018-03-04 1 162
Taxe finale 2018-07-24 2 57
PCT 2012-02-13 16 592
Correspondance 2015-01-14 2 62
Requête d'examen 2015-08-04 2 82
Demande de l'examinateur 2016-08-01 3 197
Modification / réponse à un rapport 2017-01-29 8 279
Demande de l'examinateur 2017-07-04 3 166
Modification / réponse à un rapport 2018-01-04 7 212

Listes de séquence biologique

Sélectionner une soumission LSB et cliquer sur le bouton "Télécharger la LSB" pour télécharger le fichier.

Si vous avez des difficultés à accéder au contenu, veuillez communiquer avec le Centre de services à la clientèle au 1-866-997-1936, ou envoyer un courriel au Centre de service à la clientèle de l'OPIC.

Soyez avisé que les fichiers avec les extensions .pep et .seq qui ont été créés par l'OPIC comme fichier de travail peuvent être incomplets et ne doivent pas être considérés comme étant des communications officielles.

Fichiers LSB

Pour visionner les fichiers sélectionnés, entrer le code reCAPTCHA :